Skip to main content

Advertisement

Log in

High-dose intramyocardial HMGB1 induces long-term cardioprotection in sheep with myocardial infarction

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In rodents with acute myocardial infarction (AMI), high mobility group box 1 (HMGB1) injection has produced controversial results. Given the lack of data in large mammals, we searched the dose that would promote angiogenesis and expression of specific regenerative genes in sheep with AMI (protocol 1) and, subsequently, use this dose to study long-term effects on infarct size and left ventricular (LV) function (protocol 2). Protocol 1: Sheep with AMI received 250 μg (high-dose, n = 7), 25 μg (low-dose, n = 7) HMGB1, or PBS (placebo, n = 7) in 10 intramyocardial injections (0.2 ml each) in the peri-infarct area. Seven days later, only the high-HMGB1-dose group exhibited higher microvascular densities, Ki67-positive cardiomyocytes, and overexpression of VEGF, Ckit, Tbx20, Nkx2.5, and Gata4. Protocol 2: Sheep with AMI received HMGB1 250 μg (n = 6) or PBS (n = 6). At 60 days, HMGB1-treated sheep showed smaller infarcts (8.5 ± 2.11 vs. 12.2 ± 1.97% LV area, P < 0.05, ANOVA-Bonferroni) and higher microvascular density (capillaries, 1798 ± 252 vs. 1266 ± 250/mm2; arterioles, 18.3 ± 3.9 vs. 11.7 ± 2.2/mm2; both P < 0.01). Echocardiographic LV ejection fraction, circumferential shortening, and wall thickening increased from day 3 to 60 with HMGB1 (all P < 0.05). Conclusion: in ovine AMI, high-dose HMGB1 induces angio-arteriogenesis, reduces infarct size, and improves LV function at 2 months post-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tiyyagura SR, Pinney SP. Left ventricular remodeling after myocardial infarction: past, present, and future. Mt Sinai J Med. 2006;73:840–51.

    PubMed  Google Scholar 

  3. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM, et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J Am Coll Cardiol. 2016;67:1674–83.

    Article  PubMed  Google Scholar 

  4. Gnavi R, Rusciani R, Dalmasso M, Giammaria M, Anselmino M, Roggeri DP, et al. Gender, socioeconomic position, revascularization procedures and mortality in patients presenting with STEMI and NSTEMI in the era of primary PCI. Differences or inequities? Int J Cardiol. 2014;176:724–30.

    Article  PubMed  Google Scholar 

  5. De Luca G, Petrelli A, Landriscina T, Gnavi R, Giammaria M, Costa G. Geographic and socioeconomic differences in access to revascularization following acute myocardial infarction. Eur J Pub Health. 2016;26:760–5.

    Article  Google Scholar 

  6. Rebouças JS, Santos-Magalhães NS, Formiga FR. Cardiac regeneration using growth factors: advances and challenges. Arq Bras Cardiol. 2016;107:271–5.

    PubMed  PubMed Central  Google Scholar 

  7. Awada HK, Hwang MP, Wang Y. Towards comprehensive cardiac repair and regeneration after myocardial infarction: aspects to consider and proteins to deliver. Biomaterials. 2016;82:94–112.

    Article  CAS  PubMed  Google Scholar 

  8. Guo M, Shi JH, Wang PL, Shi DZ. Angiogenic growth factors for coronary artery disease: current status and prospects. J Cardiovasc Pharmacol Ther. 2018;23:130–41.

    Article  CAS  PubMed  Google Scholar 

  9. Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15:496–506.

    Article  CAS  PubMed  Google Scholar 

  10. Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, et al. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol. 2011;9:e1001086. https://doi.org/10.1371/journal.pbio.1001086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raucci A, Di Maggio S, Scavello F, D’Ambrosio A, Bianchi M, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci. 2019;76:211–29.

    Article  CAS  PubMed  Google Scholar 

  12. Kitahara T, Takeishi Y, Harada M, Niizeki T, Suzuki S, Sasaki T, et al. Highmobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc Res. 2008;80:40–6.

    Article  CAS  PubMed  Google Scholar 

  13. Limana F, Esposito G, D'Arcangelo D, Di Carlo A, Romani S, Melillo G, et al. HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and mir-206- mediated inhibition of timp-3. PLoS One. 2011;6(6):e19845. https://doi.org/10.1371/journal.pone.0019845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi K, Fukushima S, Yamahara K, Yashiro K, Shintani Y, Coppen SR, et al. Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation. 2008;118(Suppl 1):S106–14.

    Article  PubMed  Google Scholar 

  15. Zhou X, Hu X, Xie J, Xu C, Xu W, Jiang H. Exogenous high-mobility group box 1 protein injection improves cardiac function after myocardial infarction: involvement of Wnt signaling activation. J Biomed Biotechnol. 2012;2012:1–5. https://doi.org/10.1155/2012/743879.

    Article  CAS  Google Scholar 

  16. Di Maggio S, Milano G, De Marchis F, D’Ambrosio A, Bertolotti M, Palacios BS, et al. Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent manner and worsens tissue remodeling after myocardial infarction. Biochim Biophys Acta Mol basis Dis. 2017;1863:2693–704.

    Article  CAS  PubMed  Google Scholar 

  17. Qi YF, Zhang J, Wang L, Shenoy V, Krause E, Oh SP, et al. Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia. J Mol Med. 2016;94:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang G, Zhang X, Li D, Tian J, Jiang W. Long-term oral atazanavir attenuates myocardial infarction-induced cardiac fibrosis. Eur J Pharmacol. 2018;828:97–102.

    Article  CAS  PubMed  Google Scholar 

  19. Locatelli P, Olea FD, Mendiz O, Salmo F, Fazzi L, Hnatiuk A, et al. An ovine model of postinfarction dilated cardiomyopathy in animals with highly variable coronary anatomy. ILAR J. 2011;52:E16–21.

    Article  PubMed  Google Scholar 

  20. Crottogini A, Meckert PC, Vera Janavel G, Lascano E, Negroni J, Del Valle H, et al. Arteriogenesis induced by intramyocardial vascular endothelial growth factor 165 gene transfer in chronically ischemic pigs. Hum Gene Ther. 2003;14:1307–18.

    Article  CAS  PubMed  Google Scholar 

  21. Laguens R, Cabeza Meckert P, Vera Janavel G, De Lorenzi A, Lascano E, Negroni J, et al. Cardiomyocyte hyperplasia after plasmid-mediated vascular endothelial growth factor gene transfer in pigs with chronic myocardial ischemia. J Gene Med. 2004;6:222–7.

    Article  CAS  PubMed  Google Scholar 

  22. Locatelli P, Olea FD, De Lorenzi A, Salmo F, Vera Janavel GL, Hnatiuk AP, et al. Reference values for echocardiographic parameters and indexes of left ventricular function in healthy, young adult sheep used in translational research: comparison with standardized values in humans. Int J Clin Exp Med. 2011;4:258–64.

    PubMed  PubMed Central  Google Scholar 

  23. Gräbner W, Pfitzer P. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B Cell Pathol. 1974;15:279–94.

    PubMed  Google Scholar 

  24. Adler CP, Friedburg H, Herget GW, Neuburger M, Schwalb H. Variability of cardiomyocyte DNA content, ploidy level and nuclear number in mammalian hearts. Virchows Arch. 1996;429:159–64.

    CAS  PubMed  Google Scholar 

  25. de Haan JJ, Smeets MB, Pasterkamp G, Arslan F. Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediat Inflamm. 2013;2013:1–13. https://doi.org/10.1155/2013/206039.

    Article  CAS  Google Scholar 

  26. Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G, et al. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res. 2005;97:e73–83.

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura Y, Suzuki S, Shimizu T, Miyata M, Shishido T, Ikeda K, et al. High mobility group box 1 promotes angiogenesis from bone marrow-derived endothelial progenitor cells after myocardial infarction. J Atheroscler Thromb. 2015;22:570–81.

    Article  CAS  PubMed  Google Scholar 

  28. Westerhof N, Boer C, Lamberts R, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86:1263–308.

    Article  CAS  PubMed  Google Scholar 

  29. Opie LH. Oxygen supply: coronary flow. In: Opie LH, editor. The heart. Physiology and metabolism. 2nd ed. New York: Raven Press; 1991. p. 277–81.

    Google Scholar 

  30. Tang K, Breen EC, Gerber HP, Ferrara NM, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18:63–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gounis MJ, Spiga MG, Graham RM, Wilson A, Haliko S, Lieber BB, et al. Angiogenesis is confined to the transient period of VEGF expression that follows adenoviral gene delivery to ischemic muscle. Gene Ther. 2005;12:762–71.

    Article  CAS  PubMed  Google Scholar 

  32. Olea FD, Vera Janavel G, Cuniberti L, Yannarelli G, Cabeza Meckert P, Cors J, et al. Repeated, but not single, VEGF gene transfer affords protection against ischemic muscle lesions in rabbits with hindlimb ischemia. Gene Ther. 2009;16:716–23.

    Article  CAS  PubMed  Google Scholar 

  33. Mitola S, Belleri M, Urbinati C, Coltrini D, Sparatore B, Pedrazzi M, et al. Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol. 2006;176:12–5.

    Article  CAS  PubMed  Google Scholar 

  34. Clayton JA, Chalothorn D, Faber JE. Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circ Res. 2008;103:1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, et al. Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol. 2003;262:206–24.

    Article  CAS  PubMed  Google Scholar 

  36. Boogerd CJ, Zhu X, Aneas I, Sakabe NJ, Zhang L, Sobreira DR, et al. Tbx20 is required in mid-gestation cardiomyocytes and plays a central role in atrial development. Circ Res. 2018. https://doi.org/10.1161/CIRCRESAHA.118.311339.

  37. Germani A, Limana F, Capogrossi MC. Pivotal advances: high-mobility group box 1 protein - a cytokine with a role in cardiac repair. J Leukoc Biol. 2007;81:41–5.

    Article  CAS  PubMed  Google Scholar 

  38. Foglio E, Puddighinu G, Germani A, Russo MA, Limana F. HMGB1 inhibits apoptosis following MI and induces autophagy via mTORC1 inhibition. J Cell Physiol. 2017;232:1135–43.

    Article  CAS  PubMed  Google Scholar 

  39. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem. 2001;276:39721–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank veterinarians María Inés Besansón and Pedro Iguain for anesthetic management and animal house assistants Juan Carlos Mansilla, Osvaldo Sosa, and Juan Ocampo for dedicated care of the animals. We also thank Julio Martínez, Fabián Gauna, and Rosana Valverdi for technical help.

Funding

Supported by grant 2012-1729 from the National Agency for the Promotion of Science and Technology (ANPCyT), Ministry of Science, Technology and Innovative Production (MINCyT) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Daniela Olea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures were carried out in accordance with the Guide for Care and Use of Laboratory Animals, published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996) and approved and monitored by the Laboratory Animal Care and Use Committee (CICUAL) of the Favaloro University (approval # DCT0157-12). The manuscript does not contain clinical studies or patient data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

• HMGB1 reduces infarct size and preserves LV function in ovine myocardial infarction

• HMGB1 increases capillary and arteriolar density in the infarct border zone

• HMGB1 induces overexpression of angiogenic and cardiomyogenic genes

• HMGB1-treated sheep show 15-fold higher density of cycling cardiomyocytes vs. placebo

• High-dose HMGB1 induces long-term cardioprotection in a translational model of AMI

Electronic supplementary material

ESM 1

(DOCX 13.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauzá, M.d.R., Giménez, C.S., Locatelli, P. et al. High-dose intramyocardial HMGB1 induces long-term cardioprotection in sheep with myocardial infarction. Drug Deliv. and Transl. Res. 9, 935–944 (2019). https://doi.org/10.1007/s13346-019-00628-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00628-z

Keywords

Navigation