Skip to main content
Log in

Metformin action in the gut―insight provided by [18F]FDG PET imaging

  • Commentary
  • Published:
Diabetology International Aims and scope Submit manuscript

Abstract

Suppression of hepatic gluconeogenesis is thought to largely underlie the antidiabetes action of metformin. However, this drug also exerts various effects on the gut, one of which is the enhancement of the uptake of 18F-labeled fluorodeoxyglucose (FDG), a nonmetabolizable glucose derivative, during [18F]FDG positron emission tomography (PET)–computed tomography (CT). Whereas the relevance of this effect to the glucose-lowering action of metformin remains unclear, it is of special interest because it was discovered in humans. Cessation of metformin treatment for several days is required to normalize [18F]FDG uptake in the intestine, suggesting that the enhanced uptake is not a direct effect of the drug in the circulation but rather a prolonged secondary effect. A recent study with state-of-the-art PET–magnetic resonance imaging (MRI), which provides better tissue registration and soft-tissue contrast compared with PET-CT, revealed that metformin-induced accumulation of [18F]FDG occurs primarily in the lumen of the intestine, indicating that the drug promotes excretion of glucose from the circulation into this space. This phenomenon does not necessarily imply that metformin stimulates the removal of glucose from the body in the stool. Instead, it might be related to changes in the abundance and metabolism of the gut microbiota induced by metformin. Further studies of this effect of metformin might shed light on the unanswered questions that still remain concerning the clinical action of this old drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.

    CAS  PubMed  Google Scholar 

  2. Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, Sicheri F, Jessen N, Wasserman DH, Sakamoto K. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med. 2018;24:1395–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494:256–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang XM, Zhang D, Camporez JG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24:1384–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30:359–71.

    CAS  PubMed  Google Scholar 

  6. Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24:49–57.

    CAS  PubMed  Google Scholar 

  7. Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000;59:887–90.

    CAS  PubMed  Google Scholar 

  8. Czyzyk A, Tawecki J, Sadowski J, Ponikowska I, Szczepanik Z. Effect of biguanides on intestinal absorption of glucose. Diabetes. 1968;17:492–8.

    CAS  PubMed  Google Scholar 

  9. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin is associated with higher relative abundance of mucin-degrading akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40:54–62.

    PubMed  Google Scholar 

  10. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8.

    CAS  PubMed  Google Scholar 

  12. Migoya EM, Bergeron R, Miller JL, Snyder RN, Tanen M, Hilliard D, Weiss B, Larson P, Gutierrez M, Jiang G, Liu F, Pryor KA, Yao J, Zhu L, Holst JJ, Deacon C, Herman G, Thornberry N, Amatruda J, Williams-Herman D, Wagner JA, SinhaRoy R. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin Pharmacol Ther. 2010;88:801–8.

    CAS  PubMed  Google Scholar 

  13. Bahne E, Sun EWL, Young RL, Hansen M, Sonne DP, Hansen JS, Rohde U, Liou AP, Jackson ML, de Fontgalland D, Rabbitt P, Hollington P, Sposato L, Due S, Wattchow DA, Rehfeld JF, Holst JJ, Keating DJ, Vilsbøll T, Knop FK. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight. 2018;3:e93936.

    PubMed Central  Google Scholar 

  14. DeFronzo RA, Buse JB, Kim T, Burns C, Skare S, Baron A, Fineman M. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia. 2016;59:1645–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, Cimino I, Yang M, Welsh P, Virtue S, Goldspink DA, Miedzybrodzka EL, Konopka AR, Esponda RR, Huang JT, Tung YCL, Rodriguez-Cuenca S, Tomaz RA, Harding HP, Melvin A, Yeo GSH, Preiss D, Vidal-Puig A, Vallier L, Nair KS, Wareham NJ, Ron D, Gribble FM, Reimann F, Sattar N, Savage DB, Allan BB, O’Rahilly S. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578:444–8.

    CAS  PubMed  Google Scholar 

  16. Yang M, Darwish T, Larraufie P, Rimmington D, Cimino I, Goldspink DA, Jenkins B, Koulman A, Brighton CA, Ma M, Lam BYH, Coll AP, O’Rahilly S, Reimann F, Gribble FM. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci Rep. 2021;11:2529.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, Lam TK. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gontier E, Fourme E, Wartski M, Blondet C, Bonardel G, Le Stanc E, Mantzarides M, Foehrenbach H, Pecking AP, Alberini JL. High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging. 2008;35:95–9.

    CAS  PubMed  Google Scholar 

  19. Bahler L, Stroek K, Hoekstra JB, Verberne HJ, Holleman F. Metformin-related colonic glucose uptake; potential role for increasing glucose disposal?-A retrospective analysis of (18)F-FDG uptake in the colon on PET-CT. Diabetes Res Clin Pract. 2016;114:55–63.

    CAS  PubMed  Google Scholar 

  20. Koffert JP, Mikkola K, Virtanen KA, Andersson AD, Faxius L, Hällsten K, Heglind M, Guiducci L, Pham T, Silvola JMU, Virta J, Eriksson O, Kauhanen SP, Saraste A, Enerbäck S, Iozzo P, Parkkola R, Gomez MF, Nuutila P. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Res Clin Pract. 2017;131:208–16.

    CAS  PubMed  Google Scholar 

  21. Ozülker T, Ozülker F, Mert M, Ozpaçaci T. Clearance of the high intestinal (18)F-FDG uptake associated with metformin after stopping the drug. Eur J Nucl Med Mol Imaging. 2010;37:1011–7.

    PubMed  Google Scholar 

  22. Oh JR, Song HC, Chong A, Ha JM, Jeong SY, Min JJ, Bom HS. Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. AJR Am J Roentgenol. 2010;195:1404–10.

    PubMed  Google Scholar 

  23. Lee SH, Jin S, Lee HS, Ryu JS, Lee JJ. Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med. 2016;30:629–36.

    CAS  PubMed  Google Scholar 

  24. Schreuder N, Klarenbeek H, Vendel BN, Jager PL, Kosterink JGW, van Puijenbroek EP. Discontinuation of metformin to prevent metformin-induced high colonic FDG uptake: is 48 h sufficient? Ann Nucl Med. 2020;34:833–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Massollo M, Marini C, Brignone M, Emionite L, Salani B, Riondato M, Capitanio S, Fiz F, Democrito A, Amaro A, Morbelli S, Piana M, Maggi D, Cilli M, Pfeffer U, Sambuceti G. Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice. J Nucl Med. 2013;54:259–66.

    CAS  PubMed  Google Scholar 

  26. Pénicaud L, Hitier Y, Ferré P, Girard J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J. 1989;262:881–5.

    PubMed  PubMed Central  Google Scholar 

  27. Schommers P, Thurau A, Bultmann-Mellin I, Guschlbauer M, Klatt AR, Rozman J, Klingenspor M, de Angelis MH, Alber J, Gründemann D, Sterner-Kock A, Wiesner RJ. Metformin causes a futile intestinal–hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol Metab. 2017;6:737–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Chen YC, Palmer MR, Tal I, Ahmed A, Moss AC, Kolodny GM. Focal physiologic fluorodeoxyglucose activity in the gastrointestinal tract is located within the colonic lumen. Nucl Med Commun. 2012;33:641–7.

    CAS  PubMed  Google Scholar 

  29. Kim S, Chung JK, Kim BT, Kim SJ, Jeong JM, Lee DS, Lee MC. Relationship between Gastrointestinal F-18-fluorodeoxyglucose accumulation and gastrointestinal symptoms in whole-body PET. Clin Positron Imaging. 1999;2:273–9.

    PubMed  Google Scholar 

  30. Brendle CB, Schmidt H, Fleischer S, Braeuning UH, Pfannenberg CA, Schwenzer NF. Simultaneously acquired MR/PET images compared with sequential MR/PET and PET/CT: alignment quality. Radiology. 2013;268:190–9.

    PubMed  Google Scholar 

  31. Nogami M, Zeng F, Inukai J, Watanabe Y, Nishio M, Kanda T, Ueno YR, Sofue K, Kono AK, Hori M, Ohnishi A, Kubo K, Kurimoto T, Murakami T. Physiological skin FDG uptake: A quantitative and regional distribution assessment using PET/MRI. PLoS ONE. 2021;16:e0249304.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Morita Y, Nogami M, Sakaguchi K, Okada Y, Hirota Y, Sugawara K, Tamori Y, Zeng F, Murakami T, Ogawa W. Enhanced release of glucose into the intraluminal space of the intestine associated with metformin treatment as revealed by [18F]Fluorodeoxyglucose PET-MRI. Diabetes Care. 2020;43:1796–802.

    CAS  PubMed  Google Scholar 

  33. Ito J, Nogami M, Morita Y, Sakaguchi K, Komada H, Hirota Y, Sugawara K, Tamori Y, Zeng F, Murakami T, Ogawa W. Dose-dependent accumulation of glucose in the intestinal wall and lumen induced by metformin as revealed by 18F-labelled fluorodeoxyglucose positron emission tomography-MRI. Diabetes Obes Metab. 2021;23:692–9.

    CAS  PubMed  Google Scholar 

  34. Long CL, Geiger JW, Kinney JM. Absorption of glucose from the colon and rectum. Metabolism. 1967;16:413–8.

    CAS  PubMed  Google Scholar 

  35. Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr. 1997;21:357–65.

    CAS  PubMed  Google Scholar 

  36. Mueller NT, Differding MK, Zhang M, Maruthur NM, Juraschek SP, Miller ER 3rd, Appel LJ, Yeh HC. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care. 2021;44:1462–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marounek M, Rada V, Benda V. Biochemical characteristics and fermentation of glucose and starch by rabbit caecal strains of Bifidobacterium globosum. Folia Microbiol. 1998;43:113–6.

    CAS  Google Scholar 

  38. Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch. 2020;472:1207–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ait-Omar A, Monteiro-Sepulveda M, Poitou C, Le Gall M, Cotillard A, Gilet J, Garbin K, Houllier A, Château D, Lacombe A, Veyrie N, Hugol D, Tordjman J, Magnan C, Serradas P, Clément K, Leturque A, Brot-Laroche E. GLUT2 accumulation in enterocyte apical and intracellular membranes: A study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes. 2011;60:2598–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakar Y, Meddah B, Faouzi MA, Cherrah Y, Bado A, Ducroc R. Metformin-induced regulation of the intestinal D-glucose transporters. J Physiol Pharmacol. 2010;61:301–7.

    CAS  PubMed  Google Scholar 

  41. Walker J, Jijon HB, Diaz H, Salehi P, Churchill T, Madsen KL. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK. Biochem J. 2005;385:485–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon IG, Kang CW, Park JP, Oh JH, Wang EK, Kim TY, Sung JS, Park N, Lee YJ, Sung HJ, Lee EJ, Hyung WJ, Shin SJ, Noh SH, Yun M, Kang WJ, Cho A, Ku CR. Serum glucose excretion after Roux-en-Y gastric bypass: a potential target for diabetes treatment. Gut. 2020. https://doi.org/10.1136/gutjnl-2020-321402.

    Article  PubMed  Google Scholar 

  43. Martinez-Guryn K, Leone V, Chang EB. Regional Diversity of the Gastrointestinal Microbiome. Cell Host Microbe. 2019;26:314–24.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Ogawa.

Ethics declarations

Conflicts of interest

WO has received lecture fees from Dainippon-Sumitomo Pharma, Novartis, Nippon Boehringer Ingelheim, Takeda Pharmaceutical, Mitsubishi Tanabe Pharma, and Abbott Japan as well as research funding from Noster, Nippon Boehringer Ingelheim, Boehringer Ingelheim Pharma GmbH & Co. KG, Nippon Eli-Lilly, Novo Nordisk Pharma, Abbott Japan, Abbott Diabetes Care UK Ltd, Dainippon-Sumitomo Pharma. WO has received subsidies or donations from Kowa Pharmaceutical, Novo Nordisk Pharma, Astellas, Dainippon-Sumitomo Pharma, Ono Pharmaceutical, Takeda Pharmaceutical, Abbott Japan, Novartis, Daiichi Sankyo, Nippon Eli-Lilly, Mitsubishi Tanabe Pharma, Nippon Boehringer Ingelheim. The remaining authors (HT, YM, and MN) declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchida, H., Morita, Y., Nogami, M. et al. Metformin action in the gut―insight provided by [18F]FDG PET imaging. Diabetol Int 13, 35–40 (2022). https://doi.org/10.1007/s13340-021-00545-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-021-00545-y

Keywords

Navigation