Skip to main content
Log in

Preclinical Pharmacokinetics and in vitro Metabolism of FHND5071, a Novel Selective RET Kinase Inhibitor

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Rearranged during transfection (RET) is a transmembrane receptor tyrosine kinase that plays a crucial role in tumorigenesis. FHND5071, a potent and selective RET kinase inhibitor, could exert antitumor effects by inhibiting RET autophosphorylation. The present work aims to profile the pharmacokinetics of FHND5071 in in vivo and in vitro experiments as a ground work for further clinical research.

Methods

The absorption, distribution, metabolism, and excretion properties of FHND5071 were examined, along with metabolite production and cytochrome P450 (CYP) phenotyping assay. Additionally, plasma protein binding and pharmacokinetics in mice were investigated.

Results

Microsomal stability assay corroborated moderate to high clearance of FHND5071, and the use of UPLC-Q-TOF-MS identified a total of six metabolites and suggested a possible metabolic pathway involving oxidation, demethylation, and N-dealkylation. Primary contributors to the CYP-mediated metabolism of FHND5071 were found to be CYP2C8 and CYP3A4, and FHND5071 displayed low permeability and acted as a substrate for the P-glycoprotein (P-gp). FHND5071 had a moderate to high binding in plasma and exhibited a moderate absorption degree (absolute bioavailability > 60%) The distribution of FHND5071 in mouse tissues was rapid (mostly peaking at 1–4 h) and wide (detectable in almost all tissues and organs), with the highest exposure in the spleen. A small fraction of FHND5071 was excreted via the urine and feces, and a presumed metabolic pathway involving 20 metabolites in mice is proposed.

Conclusion

Pharmacokinetic characteristics of FHND5071 were systemically profiled, which may lay the foundation for further clinical development as a drug candidate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8. https://doi.org/10.1016/0092-8674(85)90115-1.

    Article  CAS  PubMed  Google Scholar 

  2. Trupp M, Scott R, Whittemore SR, Ibanez CF. Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem. 1999;274(30):20885–94. https://doi.org/10.1074/jbc.274.30.20885.

    Article  CAS  PubMed  Google Scholar 

  3. Andreozzi F, Melillo R, Carlomagno F, Oriente F, Miele C, Fiory F, et al. Protein kinase Calpha activation by RET: evidence for a negative feedback mechanism controlling RET tyrosine kinase. Oncogene. 2003;22(19):2942–9. https://doi.org/10.1038/sj.onc.1206475.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattarai C, Poudel P, Ghosh A, Kalthur SJAN. RETThe gene encodes RET protein, which triggers intracellular signaling pathways for enteric neurogenesis, and mutation results in Hirschsprung’s disease. AIMS Neurosci. 2022;9(1):128–49. https://doi.org/10.3934/Neuroscience.2022008.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fukuda T, Kiuchi K, Takahashi M. Novel mechanism of regulation of Rac activity and lamellipodia formation by RET tyrosine kinase. J Biol Chem. 2002;277(21):19114–21. https://doi.org/10.1074/jbc.M200643200.

    Article  CAS  PubMed  Google Scholar 

  6. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Develop Cell. 2009;17(2):199–209. https://doi.org/10.1016/j.devcel.2009.07.013.

    Article  CAS  Google Scholar 

  7. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Develop. 2001;15(18):2433–44. https://doi.org/10.1101/gad.205001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis. 2020;41(2):123–9. https://doi.org/10.1093/carcin/bgz184.

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Hu X, Shen T, Li Q, Mooers BHM, Wu J. RET kinase alterations in targeted cancer therapy. Cancer Drug Resist. 2020;3(3):472-81.https://doi.org/10.20517/cdr.2020.15

  10. Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai JP. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene. 1995;10(1):191–8. https://doi.org/10.1016/0014-5793(94)01388-H.

    Article  CAS  PubMed  Google Scholar 

  11. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7. https://doi.org/10.1038/nm.2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4. https://doi.org/10.1038/nm.2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14(3):173–86. https://doi.org/10.1038/nrc3680.

    Article  CAS  PubMed  Google Scholar 

  14. Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016;12(4):192–202. https://doi.org/10.1038/nrendo.2016.11.

    Article  CAS  PubMed  Google Scholar 

  15. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846. https://doi.org/10.1038/ncomms5846.

    Article  CAS  PubMed  Google Scholar 

  16. Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15(3):151–67. https://doi.org/10.1038/nrclinonc.2017.175.

    Article  CAS  PubMed  Google Scholar 

  17. Pall G, Gautschi O. Advances in the treatment of RET-fusion-positive lung cancer. Lung Cancer. 2021;156:136–9. https://doi.org/10.1016/j.lungcan.2021.04.017.

    Article  CAS  PubMed  Google Scholar 

  18. Subbiah V, Cote GJ. Advances in targeting RET-dependent cancers. Cancer Discov. 2020;10(4):498–505. https://doi.org/10.1158/2159-8290.CD-19-1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29(8):1869–76. https://doi.org/10.1093/annonc/mdy137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thein KZ, Velcheti V, Mooers BHM, Wu J, Subbiah V. Precision therapy for RET-altered cancers with RET inhibitors. Trends Cancer. 2021;7(12):1074–88. https://doi.org/10.1016/j.trecan.2021.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ekpenyong O, Gao X, Ma J, Cooper C, Nguyen L, Olaleye OA, et al. Pre-clinical pharmacokinetics, tissue distribution and physicochemical studies of CLBQ14, a novel methionine aminopeptidase inhibitor for the treatment of infectious diseases. Drug Des Devel Ther. 2020;14:1263–77. https://doi.org/10.2147/DDDT.S238148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosure KW, Knipe JO, Browning M, Arora V, Sinz MJJOPS. Preclinical Pharmacokinetics and In Vitro Metabolism of Asunaprevir (BMS-650032), a Potent Hepatitis C Virus NS3 Protease Inhibitor. J Pharm Sci. 2015;104(9)https://doi.org/10.1002/jps.24356

  23. He P, Niu S, Wang S, Shi X, Feng S, Du L, et al. Discovery of WS-157 as a highly potent, selective and orally active EGFR inhibitor. Acta Pharm Sin B. 2019;9(6):1193–203. https://doi.org/10.1016/j.apsb.2019.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Zhao Y, Wang S, Li M, Xu Y, Ran J, et al. Discovery of novel diarylamides as orally active diuretics targeting urea transporters. Acta Pharm Sin B. 2021;11(1):181–202. https://doi.org/10.1016/j.apsb.2020.06.001.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Cheng X, Wu Y, Feng D, Qian Y, Chen L, et al. In Vitro and In Situ characterization of the intestinal absorption of Capilliposide B and Capilliposide C from Lysimachia capillipes Hemsl. Molecules. 2019. https://doi.org/10.3390/molecules24071227.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu L, Chen X, Zhang WS, Zheng L, Xu WW, Xu MY, et al. Metabolite identification, tissue distribution, excretion and preclinical pharmacokinetic studies of ET-26-HCl, a new analogue of etomidate. R Soc Open Sci. 2020;7(2):191666. https://doi.org/10.1098/rsos.191666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol. 1994;47(9):1469–79. https://doi.org/10.1016/0006-2952(94)90520-7.

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Liu D, Zheng X, Zhao Q, Jiang J, Hu PJEoodm, et al. Relative contributions of the major human CYP450 to the metabolism of icotinib and its implication in prediction of drug-drug interaction between icotinib and CYP3A4 inhibitors/inducers using physiologically based pharmacokinetic modeling. Expert Opin Drug Metab Toxicol.2015;11(6):857-68.https://doi.org/10.1517/17425255.2015.1034688

  29. Tang L, Ye L, Lv C, Zheng Z, Gong Y, Liu Z. Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes. Toxicol Lett. 2011;202(1):47–54. https://doi.org/10.1016/j.toxlet.2011.01.019.

    Article  CAS  PubMed  Google Scholar 

  30. Ohmori S, Horie T, Guengerich F, Kiuchi M, Kitada MJAob, biophysics. Purification and characterization of two forms of hepatic microsomal cytochrome P450 from untreated cynomolgus monkeys. Arch Biochem Biophys. 1993;305(2):405-13.https://doi.org/10.1006/abbi.1993.1439

  31. Komori M, Kikuchi O, Sakuma T, Funaki J, Kitada M, Kamataki T. Molecular cloning of monkey liver cytochrome P-450 cDNAs: similarity of the primary sequences to human cytochromes P-450. Biochim Biophys Acta. 1992;1171(2):141–6. https://doi.org/10.1016/0167-4781(92)90113-e.

    Article  CAS  PubMed  Google Scholar 

  32. Peter F, Interactions GJC-B. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact.1997;106(3):161-82. https://doi.org/10.1016/s0009-2797(97)00068-9

  33. Li M, de Graaf I, van de Steeg E, de Jager M, Groothuis GJ, Tivaijpiaw B. The consequence of regional gradients of P-gp and CYP3A4 for drug-drug interactions by P-gp inhibitors and the P-gp/CYP3A4 interplay in the human intestine ex vivo. Toxicol In Vitro. 2017;40:26–33. https://doi.org/10.1016/j.tiv.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed EY, Abdelhafez OM, Zaafar D, Serry AM, Ahmed YH, El-Telbany RFA, et al. Antitumor and multikinase inhibition activities of some synthesized coumarin and benzofuran derivatives. Arch Pharm (Weinheim). 2022:e2100327.https://doi.org/10.1002/ardp.202100327

  35. Li L, Chen X, Zhou J, Zhong DJDm, chemicals dtbfo. In vitro studies on the oxidative metabolism of 20(s)-ginsenoside Rh2 in human, monkey, dog, rat, and mouse liver microsomes, and human liver s9. Drug Metab Dispos. 2012;40(10):2041-53.https://doi.org/10.1124/dmd.112.046995

  36. Jin Z, Qiu W, Liu H, Jiang X, Wang LJCjonm. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chin J Nat Med. 2018;16(2):143-9.https://doi.org/10.1016/s1875-5364(18)30041-4

  37. Pang KJDm, chemicals dtbfo. Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos. 2003;31(12):1507-19.https://doi.org/10.1124/dmd.31.12.1507

Download references

Acknowledgements

We thank the Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd. for providing funds and instruments. We are grateful to all members of the Zhu laboratory for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhu.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (121877061 to YQ.Z.) and Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd.

Conflict of Interest

Jia Wang and Jinmiao Shi are employees of Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd. All other authors have no potential conflicts of interest, financial or otherwise, to declare.

Ethics Approval

All experiments involving animals were performed in accordance with protocols approved by Institutional Animal Care and Use Committee of Nanjing Normal University under approval number IACUC-20200506 on June 17, 2021 and the guidelines of the Animal Welfare Council of China.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Author Contributions

Yiran Han (First Author): Conceptualization, Methodology, Software, Investigation, Formal Analysis, Writing - Original Draft; Tiantian Wen: Methodology, Formal Analysis. Jingmiao Shi: Methodology, Software, Formal Analysis. Jia Wang: Visualization, Writing - Review & Editing. Yongqiang Zhu (Corresponding Author). Conceptualization, Funding Acquisition, Resources, Supervision, Writing - Review & Editing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 400 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wen, T., Wang, J. et al. Preclinical Pharmacokinetics and in vitro Metabolism of FHND5071, a Novel Selective RET Kinase Inhibitor. Eur J Drug Metab Pharmacokinet 48, 595–614 (2023). https://doi.org/10.1007/s13318-023-00844-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-023-00844-6

Navigation