Skip to main content
Log in

Effect of Human Cytochrome P450 2D6 Polymorphism on Progesterone Hydroxylation

  • Short Communication
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Herein, hydroxylation activities at the 6β-position and 21-position of progesterone mediated by human cytochrome P450 (CYP) 2D6 and its variants and the effects of psychotropic drugs on these hydroxylation activities were compared to clarify whether CYP2D6 polymorphisms and psychotropic drugs impact neurosteroid levels in the brain.

Methods

Progesterone was incubated with CYP2D6.1, CYP2D6.2 (Arg296Cys, Ser486Thr), CYP2D6.10 (Pro34Ser, Ser486Thr), and CYP2D6.39 (Ser486Thr) in the absence or presence of typical psychotropic drugs (fluvoxamine, fluoxetine, paroxetine, fluphenazine, and milnacipran) and endogenous steroids (testosterone and cortisol). Then, 6β- and 21-hydroxyprogesterone levels were determined by high-performance liquid chromatography.

Results

Although the Michaelis-Menten constants (Km) for progesterone 6β- and 21-hydroxylation reactions mediated by the different CYP2D6 variants were similar, the maximal velocity (Vmax) values of the reactions mediated by CYP2D6.1 and CYP2D6.2 were the highest, followed by those mediated by CYP2D6.39 and CYP2D6.10. Thus, the of progesterone 6β- and/or 21-hydroxylation reactions mediated by CYP2D6.1 and CYP2D6.2 showed the highest Vmax/Km values, followed by the reactions mediated by CYP2D6.39. All investigated compounds inhibited progesterone 21-hydroxylation mediated by CYP2D6 variants at high concentrations. Interestingly, at low concentrations, fluoxetine increased progesterone 21-hydroxylation mediated by CYP2D6.1, but not that mediated by CYP2D6.2 or CYP2D6.10. In addition, the Km value for CYP2D6.2 was elevated in the presence of fluoxetine, whereas the value for CYP2D6.1 was unaltered; however, Vmax values of both CYP2D6.1 and CYP2D6.2 were increased. Paroxetine competitively inhibited CYP2D6.1- and CYP2D6.2-mediated progesterone 21-hydroxylation.

Conclusions

These results suggest that CYP2D6 polymorphism can affect the stimulation/inhibition of progesterone 21-hydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002;34:83–448. https://doi.org/10.1081/dmr-120001392.

    Article  CAS  PubMed  Google Scholar 

  2. Niwa T, Murayama N, Imagawa Y, Yamazaki H. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev. 2015;47:89–110. https://doi.org/10.3109/03602532.2015.1011658.

    Article  CAS  PubMed  Google Scholar 

  3. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–23.

    CAS  PubMed  Google Scholar 

  4. Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat. Biochem Pharmacol. 1996;51:1041–1050. https://doi.org/10.1016/0006-2952(96)00052-4.

  5. Funae Y, Kishimoto W, Cho T, Niwa T, Hiroi T. CYP2D in the brain. Drug Metab Pharmacokinet. 2003;18(6):337–49. https://doi.org/10.2133/dmpk.18.337.

    Article  CAS  PubMed  Google Scholar 

  6. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32:1201–8. https://doi.org/10.1124/dmd.104.000794.

    Article  CAS  PubMed  Google Scholar 

  7. McFayden MC, Melvin WT, Murray GI. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol. 1998;55:825–30. https://doi.org/10.1016/s0006-2952(97)00516-9.

    Article  Google Scholar 

  8. The Pharmacogene Variation (PharmVar) Consortium. The Human Cytochrome P450 (CYP) Allele Nomenclature Database (updated April 16, 2022). https://www.pharmvar.org/gene/CYP2D6. Accessed April 16, 2022.

  9. Bertilsson L, Alm C, De Las CC, Widen J, Edman G, Schalling D. Debrisoquine hydroxylation polymorphism and personality. Lancet. 1989;1(8637):555. https://doi.org/10.1016/s0140-6736(89)90094-9.

    Article  CAS  PubMed  Google Scholar 

  10. Llerena A, Edman G, Cobaleda J, Benítez J, Schalling D, Bertilsson L. Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P450 2D6. Acta Psychiatr Scand. 1993;87:23–28. https://doi.org/10.1111/j.1600-0447.1993.tb03325.x.

  11. Nishida Y, Fukuda T, Yamamoto I, Azuma J. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics. 2000;2000(10):567–70. https://doi.org/10.1097/00008571-200008000-00010.

    Article  Google Scholar 

  12. Marez D, Legrand M, Sabbagh N, Lo Guidice JM, Spire C, Lafitte JJ, Meyer UA, Broly F. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics. 1997;7:193–202. https://doi.org/10.1097/00008571-199706000-00004.

    Article  CAS  PubMed  Google Scholar 

  13. Niwa T, Murayama N, Yamazaki H. Comparison of cytochrome P450 2D6 and variants in terms of drug oxidation rates and substrate inhibition. Curr Drug Metab. 2011;12:412–35. https://doi.org/10.2174/138920011795495286.

    Article  CAS  PubMed  Google Scholar 

  14. Baulieu EE. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology. 1998;23:963–87. https://doi.org/10.1016/s0306-4530(98)00071-7.

    Article  CAS  PubMed  Google Scholar 

  15. Jung-Testas I, Do Thi A, Koenig H, Désarnaud F, Shazand K, Schumacher M, Baulieu EE. Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol. 1999;69:97–107. https://doi.org/10.1016/s0960-0760(98)00149-6.

    Article  CAS  PubMed  Google Scholar 

  16. Hiroi T, Kishimoto W, Chow T, Imaoka S, Igarashi T, Funae Y. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology. 2001;142:3901–8. https://doi.org/10.1210/endo.142.9.8363.

    Article  CAS  PubMed  Google Scholar 

  17. Hiroi T, Imaoka S, Funae Y. Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun. 1998;249:838–43. https://doi.org/10.1006/bbrc.1998.9232.

    Article  CAS  PubMed  Google Scholar 

  18. Niwa T, Sugimoto S. Inhibitory and stimulatory effects of selective serotonin reuptake inhibitors on cytochrome P450 2D6-mediated dopamine formation from p-tyramine. J Pharm Pharm Sci. 2019;22:585-592. https://doi.org/10.18433/jpps30622.

  19. Niwa T, Hiroi T, Tsuzuki D, Yamamoto S, Narimatsu S, Fukuda T, Azuma J, Funae Y. Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Mol Brain Res. 2004;129:117–23. https://doi.org/10.1016/j.molbrainres.2004.06.030.

    Article  CAS  PubMed  Google Scholar 

  20. Niwa T, Narita K, Okamoto A, Murayama N, Yamazaki H. Comparison of steroid hormone hydroxylations by and docking to human cytochromes P450 3A4 and 3A5. J Pharm Pharm Sci. 2019;22:332-339. https://doi.org/10.18433/jpps30558.

  21. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (Multi) for microcomputer. J Pharmacobiodyn. 1981;4:879–85. https://doi.org/10.1248/bpb1978.4.879.

  22. Niwa T, Shizuku M, Yamano K. Effect of genetic polymorphism on the inhibition of dopamine formation from p-tyramine catalyzed by brain cytochrome P450 2D6. Arch Biochem Biophys. 2017;620:23–7. https://doi.org/10.1016/j.abb.2017.03.009.

    Article  CAS  PubMed  Google Scholar 

  23. Niwa T, Arima J, Michihiro Y. Role of amino acids at positions 34, 296, and 486 of cytochrome P450 2D6 in the stimulatory and inhibitory effects of psychotropic agents on dopamine formation from p-tyramine. Xenobiotica. 2021;51:1229–35. https://doi.org/10.1080/00498254.2021.1989520.

    Article  CAS  PubMed  Google Scholar 

  24. Saito T, Gutiérrez Rico EM, Kikuchi A, Kaneko A, Kumondai M, Akai F, Saigusa D, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 50 CYP2D6 allelic variants by assessing primaquine 5-hydroxylation. Drug Metab Pharmacokinet. 2018;33:250–7. https://doi.org/10.1016/j.dmpk.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  25. Niwa T, Toyota M, Kawasaki H, Ishii R, Sasaki S. Comparison of the stimulatory and inhibitory effects of steroid hormones and α-naphthoflavone on steroid hormone hydroxylation catalyzed by human cytochrome P450 3A subfamilies. Biol Pharm Bull. 2021;44:579–84. https://doi.org/10.1248/bpb.b20-00987.

    Article  CAS  PubMed  Google Scholar 

  26. Niwa T, Murayama N, Yamazaki H. Heterotropic cooperativity in oxidation mediated by cytochrome P450. Curr Drug Metab. 2008;9:453–62. https://doi.org/10.2174/138920008784746364.

    Article  CAS  PubMed  Google Scholar 

  27. Hackett JC. Membrane-embedded substrate recognition by cytochrome P450 3A4. J Biol Chem. 2018;293:4037–46. https://doi.org/10.1074/jbc.RA117.000961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niwa T, Okada K, Hiroi T, Imaoka S, Narimatsu S, Funae Y. Effect of psychotropic drugs on the 21-hydroxylation of neurosteroids, progesterone and allopregnanolone, catalyzed by rat CYP2D4 and human CYP2D6 in the brain. Biol Pharm Bull. 2008;31:348–51. https://doi.org/10.1248/bpb.31.348.

    Article  CAS  PubMed  Google Scholar 

  29. AbbVie. Luvox tablets interview form (updated May 2021). https://www.info.pmda.go.jp/go/pack/1179039F1036_3_14/?view=frame&style=XML&lang=ja. Accessed June 25, 2022.

  30. Moraes MO, Lerner FE, Corso G, Bezerra FA, Moraes ME, De Nucci G. Fluoxetine bioequivalence study: quantification of fluoxetine and norfluoxetine by liquid chromatography coupled to mass spectrometry. J Clin Pharmacol. 1999;39:1053–61. https://doi.org/10.1177/00912709922011827.

    Article  CAS  PubMed  Google Scholar 

  31. GlaxoSmithKline. Paxil tablets interview form (updated December 2020). https://www.info.pmda.go.jp/go/pack/1179041F1025_2_40/?view=frame&style=XML&lang=ja. Accessed June 25, 2022.

  32. Koytchev R, Alken RG, McKay G, Katzarov T. Absolute bioavailability of oral immediate and slow release fluphenazine in healthy volunteers. Eur J Clin Pharmacol. 1996;51:183–7. https://doi.org/10.1007/s002280050182.

    Article  CAS  PubMed  Google Scholar 

  33. Assahi Kasei Pharma. Toledomin tablets interview form (updated January 2020). https://www.info.pmda.go.jp/go/pack/1179040F1136_3_15/?view=frame&style=XML&lang=ja Accessed June 25, 2022.

  34. Andréen L, Spigset O, Andersson A, Nyberg S, Bäckström T. Pharmacokinetics of progesterone and its metabolites allopregnanolone and pregnanolone after oral administration of low-dose progesterone. 2006;54:238-244. https://doi.org/10.1016/j.maturitas.2005.11.005

  35. Delfs TM, Klein S, Fottrell P, Naether OG, Leidenberger FA, Zimmermann RC. 24-Hour profiles of salivary progesterone. Fertil Steril. 1994;62:960–6. https://doi.org/10.1016/s0015-0282(16)57058-7.

  36. Diver M. Laboratory measurement of testosterone. Front Horm Res. 2009;37:21–31. https://doi.org/10.1159/000175841.

    Article  CAS  PubMed  Google Scholar 

  37. Benfield RD, Hortobágyi T, Tanner CJ, Swanson M, Heitkemper MM, Newton ER. The effects of hydrotherapy on anxiety, pain, neuroendocrine responses, and contraction dynamics during labor. Biol Res Nurs. 2010;12:28–36. https://doi.org/10.1177/1099800410361535.

    Article  PubMed  Google Scholar 

  38. Niwa T, Yasumura M, Murayama N, Yamazaki H. Comparison of catalytic properties of cytochromes P450 3A4 and 3A5 by molecular docking simulation. Drug Metab Lett. 2014;8:43–50. https://doi.org/10.2174/1872312807666131229121228.

    Article  CAS  PubMed  Google Scholar 

Download references

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Niwa.

Ethics declarations

Author Contributions

Participated in research design: TN and SS. Conducted experiments: TN, SS, YY, and MT. Performed data analysis: TN, SS, YY, and MT. Wrote or contributed to the writing of the manuscript: TN.

Funding

The authors report there is no funding associated with the work featured in this article.

Data Availability

All data and analysis generated during these studies are included in this article or are available upon request to the corresponding author.

Code Availability

Not applicable.

Conflict of Interest

TThe authors declare no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niwa, T., Sasaki, S., Yamamoto, Y. et al. Effect of Human Cytochrome P450 2D6 Polymorphism on Progesterone Hydroxylation. Eur J Drug Metab Pharmacokinet 47, 741–747 (2022). https://doi.org/10.1007/s13318-022-00784-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-022-00784-7

Navigation