Skip to main content
Log in

Reduced Clearance of Phenobarbital in Advanced Cancer Patients near the End of Life

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Little is known about the pharmacokinetics of phenobarbital in terminally ill cancer patients. We investigated whether phenobarbital clearance alters depending on the length of survival.

Methods

We retrospectively reviewed the clinical, laboratory, and therapeutic drug monitoring (TDM) records of patients who received parenteral or oral phenobarbital for 21 consecutive days or longer between 2000 and 2016. Patients were divided into non-cancer and cancer groups. Cancer patients were further stratified according to the survival interval after TDM: those who survived > 3 months were classified as long-surviving and the remainders short-surviving cancer patients. Phenobarbital clearance (CLPB) was calculated at steady state. Multiple comparisons of median CLPB were conducted among the three groups.

Results

Data were collected from 44 non-cancer patients and 34 cancer patients comprising 24 long-surviving and 10 short-surviving cancer patients. Among 10 short-surviving cancer patients, 4 had hepatic metastasis. Median CLPB (range) in short-surviving cancer patients [0.076 (0.057‒0.114) L/kg/day] was significantly (p < 0.05) lower than that in non-cancer patients [0.105 (0.060‒0.226) L/kg/day] and in long-surviving cancer patients [0.100 (0.082‒0.149) L/kg/day].

Conclusion

Terminally ill patients with advanced cancer may have reduced CLPB, thereby TDM is recommended for these patients particularly near the end of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weller M, Stupp R, Wick W. Epilepsy meets cancer: when, why, and what to do about it? Lancet Oncol. 2012;13:e375–82.

    Article  PubMed  Google Scholar 

  2. Stirling LC, Kurowska A, Tookman A. The use of phenobarbitone in the management of agitation and seizures at the end of life. J Pain Symptom Manag. 1999;17:363–8.

    Article  CAS  Google Scholar 

  3. Morita T, Chinone Y, Ikenaga M, Miyoshi M, Nakaho T, Nishitateno K, et al. Ethical validity of palliative sedation therapy: a multicenter, prospective, observational study conducted on specialized palliative care units in Japan. J Pain Symptom Manag. 2005;30:308–19.

    Article  Google Scholar 

  4. Feely M, O’Callagan M, Duggan B, Callaghan N. Phenobarbitone in previously untreated epilepsy. J Neurol Neurosurg Psychiatry. 1980;43:365–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwan P, Brodie MJ. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia. 2004;45:1141–9.

    Article  CAS  PubMed  Google Scholar 

  6. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs-best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49:1239–76. https://doi.org/10.1111/j.1528-1167.2008.01561.x.

    Article  CAS  PubMed  Google Scholar 

  7. Franken LG, Masman AD, de Winter BCM, Baar FPM, Tibboel D, van Gelder T, et al. Hypoalbuminaemia and decreased midazolam clearance in terminally ill adult patients, an inflammatory effect? Br J Clin Pharmacol. 2017;83:1701–12. https://doi.org/10.1111/bcp.13259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franken LG, Masman AD, de Winter BC, Koch BC, Baar FP, Tibboel D, et al. Pharmacokinetics of morphine, morphine-3-glucuronide and morphine-6-glucuronide in terminally ill adult patients. Clin Pharmacokinet. 2016;55:697–709. https://doi.org/10.1007/s40262-015-0345-4.

    Article  CAS  PubMed  Google Scholar 

  9. Naito T, Tashiro M, Ishida T, Ohnishi K, Kawakami J. Cancer cachexia raises the plasma concentration of oxymorphone through the reduction of CYP3A but not CYP2D6 in oxycodone-treated patients. J Clin Pharmacol. 2013;53:812–8.

    Article  PubMed  Google Scholar 

  10. Sato H, Naito T, Ishida T, Kawakami J. Relationships between oxycodone pharmacokinetics, central symptoms, and serum interleukin-6 in cachectic cancer patients. Eur J Clin Pharmacol. 2016;72:1463–70.

    Article  CAS  PubMed  Google Scholar 

  11. Vučićević K, Jovanović M, Golubović B, Kovačević SV, Miljković B, Martinović Ž, et al. Nonlinear mixed effects modelling approach in investigating phenobarbital pharmacokinetic interactions in epileptic patients. Eur J Clin Pharmacol. 2015;71:183–90.

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama H, Echizen H, Ogawa R, Akabane A, Kato T, Orii T. Induration at injection or infusion site may reduce bioavailability of parenteral phenobarbital administration. Ther Drug Monit. 2017;39:297–302.

    Article  CAS  PubMed  Google Scholar 

  13. ARCHITECT® SYSTEM, Phenobarbital Package Insert. Abbott 2008. http://www.ilexmedical.com/files/PDF/Phenobarbital_ARC.pdf. Accessed Aug 17, 2017.

  14. AXSYM® SYSTEM, Phenobarbital Package Insert. Abbott 2010. http://www.ilexmedical.com/files/PDF/Phenobarbital_AXS.pdf. Accessed Aug 17, 2017.

  15. Branch RA, Shand DG, Wilkinson GR, Nies AS. Increased clearance of antipyrine and d-propranolol after phenobarbital treatment in the monkey. Relative contributions of enzyme induction and increased hepatic blood flow. J Clin Invest. 1974;53:1101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nelson E, Powell JR, Conrad K, Likes K, Byers J, Baker S, et al. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol. 1982;22:141–8.

    Article  CAS  Google Scholar 

  17. Messina S, Battino D, Croci D, Mamoli D, Ratti S, Perucca E. Phenobarbital pharmacokinetics in old age: a case-matched evaluation based on therapeutic drug monitoring data. Epilepsia. 2005;46:372–7.

    Article  CAS  PubMed  Google Scholar 

  18. Amano K, Maeda I, Shimoyama Shinjo T, Shirayama H, Yamada T, et al. The accuracy of physicians’ clinical predictions of survival in patients with advanced cancer. J Pain Symptom Manag. 2015;50(139–46):e1. https://doi.org/10.1016/j.jpainsymman.2015.03.004.

    Article  Google Scholar 

  19. Bernus I, Dickinson RG, Hooper WD, Eadie MJ. Urinary excretion of phenobarbitone and its metabolites in chronically treated patients. Eur J Clin Pharmacol. 1994;46:473–5.

    Article  CAS  PubMed  Google Scholar 

  20. George J, Byth K, Farrell GC. Influence of clinicopathological variables on CYP protein expression in human liver. J Gastroenterol Hepatol. 1996;11:33–9.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36:205–16.

    Article  CAS  PubMed  Google Scholar 

  22. Kacevska M, Downes MR, Sharma R, Evans RM, Clarke SJ, Liddle C, et al. Extrahepatic cancer suppresses nuclear receptor-regulated drug metabolism. Clin Cancer Res. 2011;17:3170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Nakayama.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profitable organizations.

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

The protocol of the present study was approved by the Ethics Committee of NTT Medical Centre Tokyo (Reference No. 16-1319) prior to the study.

Appendix

Appendix

Plasma phenobarbital clearance (L/kg/day) of patients at the entry of the study

No

Non-cancer patients

Cancer patients

Long-surviving

Short-surviving

1

0.100

0.092

0.069

2

0.065

0.102

0.098

3

0.082

0.149

0.114

4

0.066

0.106

0.105

5

0.099

0.097

0.061

6

0.098

0.092

0.060

7

0.071

0.122

0.057

8

0.096

0.082

0.083

9

0.068

0.103

0.084

10

0.096

0.100

0.057

11

0.090

0.083

 

12

0.135

0.089

 

13

0.153

0.101

 

14

0.137

0.104

 

15

0.097

0.115

 

16

0.148

0.103

 

17

0.109

0.095

 

18

0.163

0.093

 

19

0.165

0.086

 

20

0.109

0.116

 

21

0.083

0.100

 

22

0.126

0.109

 

23

0.161

0.112

 

24

0.117

0.084

 

25

0.111

  

26

0.106

  

27

0.101

  

28

0.117

  

29

0.147

  

30

0.083

  

31

0.126

  

32

0.226

  

33

0.081

  

34

0.118

  

35

0.076

  

36

0.067

  

37

0.103

  

38

0.141

  

39

0.060

  

40

0.117

  

41

0.152

  

42

0.094

  

43

0.111

  

44

0.104

  

Median (range)

0.105 (0.060‒0.226)*

0.100 (0.082‒0.149)*

0.076 (0.057‒0.114)

  1. *p < 0.05 compared with the short surviving cancer patients

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, H., Echizen, H., Ogawa, R. et al. Reduced Clearance of Phenobarbital in Advanced Cancer Patients near the End of Life. Eur J Drug Metab Pharmacokinet 44, 77–82 (2019). https://doi.org/10.1007/s13318-018-0495-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0495-5

Navigation