Skip to main content
Log in

On the prediction of arresting efficiency of integral buckle arrestors for deepwater pipelines

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Dedicated finite element models are developed to simulate the crossing of a pipeline integral buckle arrestor by a buckle propagating under the quasi-static, steady-state condition. In addition, broad parametric studies are conducted to identify the mechanism governing the arresting performance, which consider the geometric characteristics and material properties of the pipe and arrestor. Based upon the extensive study, the more reasonable empirical design formulas for the crossover pressure and the arresting efficiency are established by means of the partial fitting. Good agreements between the existing experimental results and the predictions demonstrate that the proposed empirical formula and the lower bound envelope line for the arresting efficiency provide a powerful design tool to estimate the arresting performance of such complex structure systems in engineering practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albermani, F., Khalilpasha, H., and Karampour, H. (2011). “Propagation buckling in deep sub-sea pipelines.” Engineering Structures, 33(9), pp. 2547–2553.

    Article  Google Scholar 

  • API (2007). API specifications 5L: specifications for line pipe. 44th edition. Ameircan Petroleum Institute, Washington, D.C.

    Google Scholar 

  • Bastard, A. H. and Bell, M. (2001). “Evaluation of buckle arrestors concepts for reeled pipe-in-pipe.” Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, Brazil, OMAE2001/-PIPE4123.

    Google Scholar 

  • Gong, S. F., Sun, B., Bao, S., and Bai, Y. (2012). “Buckle propagation of offshore pipelines under external pressure.” Marine Structures, 29(1), pp. 115–130.

    Article  Google Scholar 

  • Gong, S. F., Ni, X. Y., Bao, S., and Bai, Y. (2013). “Asymmetric collapse of offshore pipeline under external pressure.” Ships and Offshore Structures, 8(2), pp. 176–188.

    Article  Google Scholar 

  • Gong, S. F. and Li, G. (2015). “Buckle propagation of pipein-pipe systems under external pressure.” Engineering Structures, 84, pp. 207–222.

    Article  Google Scholar 

  • Hibbitt, H. D., Karlsson, B. I., and Sorensen, P. (2010). ABAQUS theory manual, version 6.10. ABAQUS Inc. Pawtucket, RI, USA.

    Google Scholar 

  • Johns, T. G., Mesloh, R. E., and Sorenson, J. E. (1978). “Propagating buckle arrestors for offshore pipelines.” Journal of Pressure Vessel Technology, ASME, 100(2), pp. 206–214.

    Article  Google Scholar 

  • Karampour, H., Albermani, F., and Gross, J. (2013a). “On lateral and upheaval buckling of subsea pipelines.” Engineering Structures, 52, pp. 317–330.

    Article  Google Scholar 

  • Karampour, H., Albermani, F., and Veidt, M. (2013b). “Buckle interaction in deep subsea pipelines.” Thinwalled Structures, 72, pp. 113–120.

    Google Scholar 

  • Karampour, H. and Albermani, F. (2014). “Experimental and numerical investigations of buckle interaction in subsea pipeline.” Engineering Structures, 66, pp. 81–88.

    Article  Google Scholar 

  • Khalilpasha, H. and Albermani, F. (2013). “Hyperbaric chamber test of subsea pipelines.” Thin-Walled Structures, 71, pp.1–6.

    Article  Google Scholar 

  • Kyriakides, S., Park, T. D., and Netto, T. A. (1998). “On the design of integral buckle arrestors for offshore pipelines.” Applied Ocean Research, 20(1-2), pp. 95–104.

    Article  Google Scholar 

  • Kyriakides, S. and Lee, L. H. (2005). “Buckle propagation in confined steel tubes.” International Journal of Mechanical Sciences, 47(4-5), pp. 603–620.

    Article  Google Scholar 

  • Langner, C. G. (1999). “Buckle arrestor for deepwater pipeline.” Proceedings of the Offshore Technology Conference, Houston, Texas, USA, OTC10711.

    Google Scholar 

  • Lee, L. H., Kyriakides, S., and Netto, T. A. (2008). “Integral buckle arrestors for offshore pipelines: Enhanced design criteria.” International Journal of Mechanical Sciences, 50(6), pp. 1058–1064.

    Article  Google Scholar 

  • Mansour, G. N. and Tassoulas, J. L. (1997). “Crossover of integral–ring buckle arrestors: computational results.” Journal of Engineering Mechanics, ASCE, 123(4), pp. 359–366.

    Article  Google Scholar 

  • Mesloh, R. E., Sorenson, J. E., and Atterbury, T. J. (1973). “Buckling and offshore pipelines.” Gas Magazine, 49(7), pp. 40–43.

    Google Scholar 

  • Netto, T. A. and Estefen, S. F. (1996). “Buckle arrestor for deepwater pipelines.”” Marine Structures, 9(9), pp. 873–883.

    Article  Google Scholar 

  • Omrani, Z., Abedi, K., and Mostafa Gharabaghi, A. R. (2013). “Effects of diameter to thickness ratio and external pressure on the velocity of dynamic buckle propagation in offshore pipelines.” Journal of Offshore Mechanics and Artic Engineering, ASME, 135(4), 041701.

    Article  Google Scholar 

  • Palmer, A. C. and Martin, J. H. (1975). “Buckle propagation in submarine pipelines”. Nature, 254(5495), pp. 46–48.

    Article  Google Scholar 

  • Park, T. D. and Kyriakides, S. (1997). “On the performance of integral buckle arrestors for offshore pipelines.” International Journal of Mechanical Sciences, 39(6), pp. 643–669.

    Article  Google Scholar 

  • Steel, W. J. M. and Spence, J. (1983). “On propagating buckles and their arrest in sub-sea pipelines.” Proceedings of the Institution of Mechanical Engineers, 197A, pp.139–147.

    Article  Google Scholar 

  • Toscano, R. G., Mantovano, L. O., Amenta, P. M., Charreau, R. F., Johnson, D. H., Assanelli, A. P., and Dvorkin, E. N. (2008). “Collapse arrestors for deepwater pipelines. Cross-over mechanisms.” Computers and Structures, 86(7-8), pp. 728–743.

    Article  Google Scholar 

  • Wang, Z., Chen, Z. H., and Liu, H. B. (2015a). “On the lateral buckling of subsea pipe-in-pipe systems.” International Journal of Steel Structures, 15(4), pp. 881–892.

    Article  Google Scholar 

  • Wang, Z., Chen, Z. H., and Liu, H. B. (2015b). “Numerical study on upheaval buckling of pipe-in-pipe systems with full contact imperfections.” Engineering Structures, 99, pp. 264–271.

    Article  Google Scholar 

  • Xue, J. H. (2013). “Postbuckling analysis of the length of transition zone in a buckle propagating pipeline.” Journal of Applied Mechanics, ASME, 80(5), 051002.

    Article  Google Scholar 

  • Xue, J. H. and Gan, N. (2014). “A comprehensive study on a propagating buckle in externally pressurized pipelines.” Journal of Mechanical Science and Technology, 28(12), pp. 4907–4919.

    Article  Google Scholar 

  • Yu, J. X., Sun, Z. Z., Liu, X. X., and Zhai, Y. X. (2014). “Ring-truss theory on offshore pipelines buckle propagation.” Thin-Walled Structures, 85, pp. 313–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunfeng Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Li, G. On the prediction of arresting efficiency of integral buckle arrestors for deepwater pipelines. Int J Steel Struct 17, 1443–1458 (2017). https://doi.org/10.1007/s13296-017-1214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-017-1214-9

Keywords

Navigation