Skip to main content

Advertisement

Log in

Direct targeting of HGF by miR-16 regulates proliferation and migration in gastric cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) have been reported to be involved in each stage of tumor development in various types of cancers. We have previously showed that miR-16 is downregulated in cancer and acts as a tumor suppressor. Other studies indicated that hepatocyte growth factor (HGF)/c-Met is implicated in proliferation, migration, and other pathophysiological processes. However, little is known about the relationship between miR-16 and HGF/c-Met in gastric cancer (GC). In the present study, we used bioinformatics tools and related experiments to search for miRNAs targeting HGF. Here, we found that miR-16 suppressed HGF protein expression by directly targeting 3′-untranslated region (UTR) of HGF mRNA. Subsequently, it was illustrated the downregulation of miR-16 promotes, while overexpressed of miR-16 significantly inhibits cell proliferation and migration by negatively regulating HGF/c-Met pathway. Moreover, the biological role of HGF in GC cells was determined by using HGF siRNA and HGF-overexpressing plasmid, respectively. To conclude, our results provide a potential target by using miR-16 for the future clinical treatment of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allemani C, Weir HK, Carreira H, Harewood R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo e Silva G, Chen WQ, Ogunbiyi OJ, Rachet B, Soeberg MJ, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker TC, Coleman MP. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (concord-2). Lancet (London, England). 2015;385:977–1010.

    Article  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  3. Hartgrink HH, Jansen EPM, van Grieken NCT, van de Velde CJH. Gastric cancer. Lancet. 374:477–90.

  4. van der Voort R, Taher TE, Derksen PW, Spaargaren M, van der Neut R, Pals ST. The hepatocyte growth factor/met pathway in development, tumorigenesis, and b-cell differentiation. Adv Cancer Res. 2000;79:39–90.

    Article  PubMed  Google Scholar 

  5. Kim CH, Moon SK, Bae JH, Lee JH, Han JH, Kim K, Choi EC. Expression of hepatocyte growth factor and c-Met in hypopharyngeal squamous cell carcinoma. Acta Otolaryngol. 2006;126:88–94.

    Article  CAS  PubMed  Google Scholar 

  6. Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res. 2004;64:6109–18.

    Article  CAS  PubMed  Google Scholar 

  7. Amemiya H, Kono K, Itakura J, Tang RF, Takahashi A, An FQ, Kamei S, Iizuka H, Fujii H, Matsumoto Y. C-met expression in gastric cancer with liver metastasis. Oncology. 2002;63:286–96.

    Article  CAS  PubMed  Google Scholar 

  8. Han SU, Lee HY, Lee JH, Kim WH, Nam H, Kim H, Cho YK, Kim MW, Lee KU. Modulation of e-cadherin by hepatocyte growth factor induces aggressiveness of gastric carcinoma. Ann Surg. 2005;242:676–83.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee KH, Choi EY, Hyun MS, Jang BI, Kim TN, Kim SW, Song SK, Kim JH, Kim JR. Hepatocyte growth factor/c-met signaling in regulating urokinase plasminogen activator in human stomach cancer: a potential therapeutic target for human stomach cancer. Korean J Intern Med. 2006;21:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park WS, Oh RR, Kim YS, Park JY, Shin MS, Lee HK, Lee SH, Yoo NJ, Lee JY. Absence of mutations in the kinase domain of the met gene and frequent expression of met and HGF/SF protein in primary gastric carcinomas. APMIS. 2000;108:195–200.

    Article  CAS  PubMed  Google Scholar 

  11. Cambridge DPB. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004.

  12. Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C, Yuan Y, Li Z, Zen K, Ba Y, Zhang CY. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 2012;58:610–8.

    Article  CAS  PubMed  Google Scholar 

  13. Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C, Huang D, Chen X, Zhang H, Zhuang R, Deng T, Liu H, Yin J, Wang S, Zen K, Ba Y, Zhang CY. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784–91.

    Article  CAS  PubMed  Google Scholar 

  14. Stahlhut Espinosa CE, Slack FJ. The role of microRNAs in cancer. Yale J Biol Med. 2006;79:131–40.

    PubMed  Google Scholar 

  15. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  16. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  17. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  18. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C. MicroRNA profiling of human gastric cancer. Mol Med Rep. 2009;2:963–70.

    CAS  PubMed  Google Scholar 

  19. Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, Lu DS, Zou QM, Xiao B, Mao XH. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012;586:722–8.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X, Xu G, Yin C, Jin W, Zhang G. Down-regulation of miR-203 induced by helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting cask. Oncotarget. 2014;5:11631–40.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z, Chun-Sheng K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen JJ, Cai WY, Liu XW, Luo QC, Chen G, Huang WF, Li N, Cai JC. Reverse correlation between microRNA-145 and FSCN1 affecting gastric cancer migration and invasion. PLoS One. 2015;10:e0126890.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17:215–20.

    Article  CAS  PubMed  Google Scholar 

  25. Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69:5553–9.

    Article  CAS  PubMed  Google Scholar 

  26. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314.

    Article  CAS  PubMed  Google Scholar 

  28. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  29. Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, Yang Y, Xiao B, Guo J. LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget. 2016.

  30. Hsu KW, Fang WL, Huang KH, Huang TT, Lee HC, Hsieh RH, Chi CW, Yeh TS. Notch1 pathway-mediated microRNA-151-5p promotes gastric cancer progression. Oncotarget. 2016

  31. Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VI, Sekar P. Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol. 2016.

  32. Takahashi N, Yamada Y, Taniguchi H, Fukahori M, Sasaki Y, Shoji H, Honma Y, Iwasa S, Takashima A, Kato K, Hamaguchi T, Shimada Y. Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer. BMC Res Notes. 2014;7:271.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, Ercolani C, Di Agostino S, Cambria AM, Germoni S, Grasso G, Blandino R, Panebianco V, Ziparo V, Federici O, Muti P, Strano S, Carboni F, Mottolese M, Diodoro M, Pescarmona E, Garofalo A, Blandino G. miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 2012;3:e423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu HY, Xu WL, Wang LQ, Chen MB, Shen HL. Relationship between p53 status and response to chemotherapy in patients with gastric cancer: a meta-analysis. PLoS One. 2014;9:e95371.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu YC, Lv P, Han J, Yu JL, Zhu X, Hong LL, Zhu WY, Yu QM, Wang XB, Li P, Ling ZQ. Enhanced serum methylated p16 DNAs is associated with the progression of gastric cancer. Int J Clin Exp Pathol. 2014;7:1553–62.

    PubMed  PubMed Central  Google Scholar 

  36. To CT, Tsao MS. The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (review). Oncol Rep. 1998;5:1013–24.

    CAS  PubMed  Google Scholar 

  37. Mariani M, McHugh M, Petrillo M, Sieber S, He S, Andreoli M, Wu Z, Fiedler P, Scambia G, Shahabi S, Ferlini C. HGF/c-Met axis drives cancer aggressiveness in the neo-adjuvant setting of ovarian cancer. Oncotarget. 2014;5:4855–67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Giannoni P, Scaglione S, Quarto R, Narcisi R, Parodi M, Balleari E, Barbieri F, Pattarozzi A, Florio T, Ferrini S, Corte G, de Totero D. An interaction between hepatocyte growth factor and its receptor (c-MET) prolongs the survival of chronic lymphocytic leukemic cells through STAT3 phosphorylation: a potential role of mesenchymal cells in the disease. Haematologica. 2011;96:1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol. 2007;27:2240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting Bcl2. Proc Natl Acad Sci U S A. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuo W, Wang ZZ, Xue J. Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression. Int J Mol Sci. 2014;15:14298–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81372394) and Tianjin Health and Family Planning Commission Foundation of Science and Technology (15KG142). This work was also supported by grants from National Research Platform of Clinical Evaluation Technology for New Anticancer Drugs (No. 2013ZX09303001). The funders had no role in study design; in collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit this article for publication.

Author contributions

Shuang Li, Haiyang Zhang, Xinyi Wang, Yanjun Qu, and Jingjing Duan performed most of the experiments, analyzed data, and wrote the manuscript. Ting Deng, Rui Liu, Tao Ning, and Le Zhang reviewed and edited the manuscript. Ming Bai and Likun Zhou performed some experiments. Yi Ba and Guoguang Ying designed the experiments and edited the manuscript. Yi Ba is the guarantor of this work, has full access to all of the data in the study, and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoguang Ying or Yi Ba.

Ethics declarations

The study was conducted with the approval of the Ethics Committee of Tianjin Medical University Cancer Institute and Hospital and informed consent was obtained before surgery.

Conflicts of interest

None

Additional information

Shuang Li, Haiyang Zhang, Xinyi Wang, Yanjun Qu, and Jingjing Duan contribute to this work equally.

Electronic supplementary material

ESM 1

(XLS 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, H., Wang, X. et al. Direct targeting of HGF by miR-16 regulates proliferation and migration in gastric cancer. Tumor Biol. 37, 15175–15183 (2016). https://doi.org/10.1007/s13277-016-5390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5390-6

Keywords

Navigation