Skip to main content

Advertisement

Log in

IQGAP1 gene silencing induces apoptosis and decreases the invasive capacity of human hepatocellular carcinoma cells

  • Original Article
  • Published:
Tumor Biology

Abstract

IQ motif-containing GTPase-activating proteins (IQGAPs) belong to a conserved family, and they are involved in various intracellular processes. IQGAP1 is expressed in all cells, while IQGAP2 and IQGAP3 are mainly expressed in hepatic cells. IQGAP1 has been suggested to be an oncogene, while IQGAP2 is considered a tumor-suppressor gene. However, the relationship between RAS family genes and IQGAP genes remains unclear. We recently demonstrated this interaction in a chemically induced mouse liver cancer. In this study, IQGAP1 expression was partially silenced in human hepatocellular carcinoma (HepG2) cells. We investigated the impact of IQGAP1 silencing on the interactions of IQGAP and RAS with several apoptotic proteins, including caspase-3 (CASP3), BCL2-associated X protein (BAX), and B-cell leukemia/lymphoma 2 (BCL2). Additionally, we investigated the effects of the interactions of these genes on cell viability, proliferation, apoptosis, and invasive capacity. IQGAP1 siRNA-treated HepG2 cells showed lower invasive capacity than the control cells, and this reduction was time- and vector concentration-dependent. In addition, IQGAP1 silencing resulted in significantly lower IQGAP1 level and subsequently higher IQGAP2 and IQGAP3 expression in HepG2 cells than in the control. Flow cytometry analyses indicated that the silencing of IQGAP1 can induce early and late apoptosis in HepG2 cells. Additionally, IQGAP2, IQGAP3, CASP3, and BAX were upregulated whereas IQGAP1 and BCL2 were downregulated in the siRNA-treated cells. Furthermore, we observed that the mRNA levels of HRAS, KRAS, NRAS, and MRAS decreased upon IQGAP1 silencing. These findings indicate that IQGAP1 potentially regulates the expression of IQGAP and RAS gene families and demonstrate its regulatory role in the apoptotic network. Taken together, our findings suggest that IQGAP1 silencing plays crucial roles in the apoptosis of HepG2 cells and lowers their proliferative and invasive capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and drosophila. Biochim Biophys Acta. 2003;1603:47–82.

    CAS  PubMed  Google Scholar 

  2. Chen F, Zhu H, Zhou L, Wu S, Wang J, Chen Z. IQGAP1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation by Akt activation. EXPERIMENTAL and MOLECULAR MEDICINE. July 2010;42(7):477–83.

  3. Fukata M, Nakagawa M, Kaibuchi K. Roles of rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol. 2003;15(5):590–7.

    Article  CAS  PubMed  Google Scholar 

  4. Machesky LM. Curr Biol. 1998;8:R202.

    Article  CAS  PubMed  Google Scholar 

  5. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. J Cell Sci. 2005;118:2085.

    Article  CAS  PubMed  Google Scholar 

  6. Brown MD, Sacks DB. IQGAP1 in cellular signaling: bridging the gap. Trends Cell Biol. 2006;16(5):242–9.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt VA, Chiariello CS, Capilla E, Miller F, Bahou WF. Development of hepatocellular carcinoma in Iqgap2 deficient mice is IQGAP1 dependent. Mol Cell Biol. 2008;28(5):1489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt VA, Scudder L, Devoe CE, Bernards A, Cupit LD, Bahou WF. IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood. 2003;101(8):3021–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Watanabe T, Noritake J, Fukata M, Yoshimura T, Itoh N, Harada T, Nakagawa M, Matsuura Y, Arimura N, et al. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J Cell Sci. 2007;120(4):567–77.

    Article  CAS  PubMed  Google Scholar 

  10. Briggs MW, Sacks DB. IQGAP proteins are integral components of cytoskeletal regulation EMBO rep. 2003;4:571–4.

  11. White CD, Brown MD, Sacks DB IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett 2009;583:1817–1824

  12. Zoheir KMA, Abd-Rabou AA, Harisa GI, Ashour AE, Ahmad SF, Attia SM, et al. Gene expression of IQGAPs and Ras families in an experimental mouse model for hepatocellular carcinoma: a mechanistic study of cancer progression. International journal of clinical and experimental pathology. 2015;8(8):8821.

    PubMed  PubMed Central  Google Scholar 

  13. Johnson M, Sharma M, Henderson BR. IQGAP1 regulation and roles in cancer cellular signalling. 2009;21:1471–8.

  14. Jadeski L, Mataraza JM, Jeong HW, Li Z, Sacks DB. IQGAP1 stimulates proliferation and enhances tumorigenesis of human breast epithelial cells. J Biol Chem 2008;283: 1008–1017

  15. Galuppo R, Maynard E, Shah M, Daily MF, Chen C, Spear BT, Gedaly R. Synergistic inhibition of HCC and liver cancer stem cell proliferation by targeting RAS/RAF/MAPK and WNT/β-catenin pathways. Anticancer Res. 2014;34:1709–14.

    CAS  PubMed  Google Scholar 

  16. Kim Y, Sills RC, Houle CD. Overview of the molecular biology of hepatocellular neoplasms and hepatoblastomas of the mouse liver. Toxicol Pathol. 2005;33:175–80.

    Article  CAS  PubMed  Google Scholar 

  17. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.

    Article  CAS  PubMed  Google Scholar 

  18. Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  19. Elbashir SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.

    Article  CAS  PubMed  Google Scholar 

  20. McCaffrey AP et al. Gene expression: RNA interference in adult mice. Nature. 2002;418:38–9.

    Article  CAS  PubMed  Google Scholar 

  21. Morrissey DV et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotech. 2005;23:1002–7.

    Article  CAS  Google Scholar 

  22. Okumura A, Pitha PM, Harty RN. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A. 2008;105:3974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ptasznik A, Nakata Y, Kalota A, Emerson SG, Gewirtz AM. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1+ leukemia cells. Nature Med. 2004;10:1187–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release. 2008;129:107–16.

    Article  CAS  PubMed  Google Scholar 

  25. Xia C-F, Zhang Y, Zhang Y, Boado R, Pardridge W. Intravenous siRNA of brain cancer with receptor targeting and avidin–biotin technology. Pharm Res. 2007;24:2309–16.

    Article  CAS  PubMed  Google Scholar 

  26. Dong P.X., Jia N., Xu Z.J, Liu Y.T., Li D.J, Feng Y.J., J. Exp. Clin. Cancer Res. 27 (2008)

  27. Clark EA, Golub TR, Lander ES, Hynes RO. Nature. 2000;406:532.

    Article  CAS  PubMed  Google Scholar 

  28. Yamaoka-Tojo M et al. IQGAP1 a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species-dependent endothelial migration and proliferation. Circ Res. 2004;95:276–83.

    Article  CAS  PubMed  Google Scholar 

  29. Meyer RD, Sacks DB, Rahimi N. IQGAP1-dependent signaling pathway regulates endothelial cell proliferation and angiogenesis. PLoS One. 2008;3:e3848–58.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.

    Article  CAS  PubMed  Google Scholar 

  31. Dong P, Nabeshima K, Nishimura N, Kawakami T, Hachisuga T, Kawarabayashi T, Iwasaki H. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett. 2006;243:120–7.

    Article  CAS  PubMed  Google Scholar 

  32. Nabeshima K, Shimao Y, Inoue T, Koono M. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 2002;176:101–9.

    Article  CAS  PubMed  Google Scholar 

  33. Walch A, Seidl S, Hermannstadter C, et al. Combined analysis of Rac1, IQGAP1, Tiam1 and E-cadherin expression in gastric cancer. Mod Pathol. 2008;21:544–52.

    Article  CAS  PubMed  Google Scholar 

  34. Jin SH, Akiyama Y, Fukamachi H, et al. IQGAP2 inactivation through aberrant promoter methylation and promotion of invasion in gastric cancer cells. Int J Cancer. 2008;122:1040–6.

    Article  CAS  PubMed  Google Scholar 

  35. Xie Y, Yan J, Cutz JC, et al. IQGAP2, a candidate tumour suppressor of prostate tumorigenesis. Biochim Biophys Acta. 2012;1822:875–84.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt VA. Watch the GAP: emerging roles for IQ motif-containing GTPase-activating proteins IQGAPs in hepatocellular carcinoma. Int J Hepatol. 2012;2012:958673.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou J, et al. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 is involved in quercetin-induced regulation of cell proliferation and migration. Omics. 2009.

  38. Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol. 2005;25:7940–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gnatenko DV, Xu X, Zhu W, Schmidt VA. Transcript profiling identifies iqgap2(−/−) mouse as a model for advanced human hepatocellular carcinoma. PLoS One. 2013;8:e71826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brill S, Li S, Lyman CW, et al. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol. 1996;16:4869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hart MJ, Callow MG, Souza B, Polakis P. IQGAP1, a calmodulin-binding protein with a RasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 1996;15:2997–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McCallum SJ, WJ W, Cerione RA. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2. J Biol Chem. 1996;271:21732–7.

    Article  CAS  PubMed  Google Scholar 

  43. Joyal JL, Annan RS, Ho YD, et al. Calmodulin modulates the interaction between IQGAP1 and Cdc42. Identification of IQGAP1 by nanoelectrospray tandem mass spectrometry. J Biol Chem. 1997;272:15419–25.

    Article  CAS  PubMed  Google Scholar 

  44. Van Hengel J, D’Hooge P, Hooghe B, et al. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver. Gastroenterology. 2008;134:781–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH) King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, award number 12-BIO2926-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairy MA Zoheir.

Ethics declarations

Conflict of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoheir, K.M., Abd-Rabou, A.A., Harisa, G.I. et al. IQGAP1 gene silencing induces apoptosis and decreases the invasive capacity of human hepatocellular carcinoma cells. Tumor Biol. 37, 13927–13939 (2016). https://doi.org/10.1007/s13277-016-5283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5283-8

Keywords

Navigation