Skip to main content

Advertisement

Log in

Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins

  • Original Article
  • Published:
Tumor Biology

Abstract

The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AKT:

RAC-alpha serine/threonine-protein kinase

DMEM:

Dulbecco’s modified Eagle’s medium

ERK1/2:

Extracellular signal-regulated kinases 1/2

FCS:

Fetal calf serum

Gab1:

GRB2-associated binding protein 1

NF-κB:

Nuclear factor “kappa-light-chain-enhancer” of activated B cells

SHC:

SHC-transforming protein

TLR:

Toll-like receptors

Tyr:

Tyrosine

References

  1. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124:823–35.

    Article  CAS  PubMed  Google Scholar 

  2. Porta C, Larghi P, Rimoldi M, Totaro MG, Allavena P, Mantovani A, Sica A. Cellular and molecular pathways linking inflammation and cancer. Immunobiology. 2009;214:761–77.

    Article  CAS  PubMed  Google Scholar 

  3. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.

    Article  CAS  PubMed  Google Scholar 

  4. Diamond G, Beckloff N, Ryan LK. Host defense peptides in the oral cavity and the lung: similarities and differences. J Dent Res. 2008;87:915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Teles RP, Haffajee AD, Socransky SS. Microbiological goals of periodontal therapy. Periodontol. 2006;42:180–218.

    Article  Google Scholar 

  6. Preshaw PM, Taylor JJ. How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? J Clin Periodontol. 2011;38(Suppl. 11):60–84.

    Article  PubMed  Google Scholar 

  7. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, Taylor GW, Page RC, Beck JD, Genco RJ. Update on prevalence of periodontitis in adults in the United States: NHANES 2009-2012. J Periodontol. 2015;17:1–18.

    Google Scholar 

  8. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90.

    Article  CAS  PubMed  Google Scholar 

  9. Güncü GN, Yilmaz DK, Könönen E, Gürsoy UK. Salivary antimicrobial peptides in early detection of periodontitis. Front Cell Infect Microbiol. 2015;5:99.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20.

    Article  CAS  PubMed  Google Scholar 

  11. Lehrer RI. Primate defensins. Nat Rev Microbiol. 2004;2:727–38.

    Article  CAS  PubMed  Google Scholar 

  12. Winter J, Kraus D, Reckenbeil J, Probstmeier R. Oncogenic relevant defensins: expression pattern and proliferation characteristics of human tumor cell lines. Tumour Biol. 2016;37(6):7959–66. doi:10.1007/s13277-015-4701-7.

    Article  CAS  PubMed  Google Scholar 

  13. Winter J, Wenghoefer M. Review: human defensins: potential tools for clinical applications. Polymers. 2012;4(1):691–709. doi:10.3390/polym4010691.

    Article  Google Scholar 

  14. Donald CD, Sun CQ, Lim SD, Macoska J, Cohen C, Amin MB, Young AN, Ganz TA, Marshall FF, Petros JA. Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab Investig. 2003;83:501–5.

    Article  CAS  PubMed  Google Scholar 

  15. Sun CQ, Arnold R, Fernandez-Golarz C, Parrish AB, Almekinder T, He J, Ho SM, Svoboda P, Pohl J, Marshall FF, Petros JA. Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma. Cancer Res. 2006;66:8542–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wenghoefer M, Pantelis A, Dommisch H, Reich R, Martini M, Allam JP, Novak N, Bergé S, Jepsen S, Winter J. Decreased gene expression of human β-defensin-1 in the development of squamous cell carcinoma of the oral cavity. Int J Oral Maxillofac Surg. 2008;37:660–3.

    Article  CAS  PubMed  Google Scholar 

  17. Winter J, Pantelis A, Reich R, Martini M, Kraus D, Jepsen S, Allam JP, Novak N, Wenghoefer M. Human beta-defensin-1, -2, and -3 exhibit opposite effects on oral squamous cell carcinoma cell proliferation. Cancer Investig. 2011;29(3):196–201.

    Article  Google Scholar 

  18. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127(3):594–604.

    Article  CAS  PubMed  Google Scholar 

  19. Wenghoefer M, Pantelis A, Najafi T, Deschner J, Allam JP, Novak N, Reich R, Martini M, Bergé S, Fischer HP, Jepsen S, Winter J. Gene expression of oncogenes, antimicrobial peptides, and cytokines in the development of oral leukoplakia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:351–6.

    Article  CAS  PubMed  Google Scholar 

  20. Winter J, Pantelis A, Kraus D, Reckenbeil J, Reich R, Jepsen S, Fischer HP, Allam JP, Novak N, Wenghoefer M. Human alpha-defensin (DEFA) gene expression helps to characterise benign and malignant salivary gland tumours. BMC Cancer. 2012;12(1):465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.Y. Radeva, F. Jahns, A. Wilhelm, M. Glei, U. Settmacher, K.O. Greulich, et al. Defensins alpha 6 (DEFA 6) overexpression threshold of over 60 fold can distinguish between adenoma and fully blown colon carcinoma in individual patients. BMC Cancer. 2010;10. doi:10.1186/1471-2407-10-588.

  22. Kraus D, Deschner J, Jäger A, Wenghoefer M, Bayer S, Jepsen S, Allam JP, Novak N, Meyer R, Winter J. Human β-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells. J Cell Physiol. 2012;227(3):994–1003. doi:10.1002/jcp.22808.

    Article  CAS  PubMed  Google Scholar 

  23. Winter J, Pantelis A, Reich R, Jepsen S, Allam JP, Novak N, Wenghoefer M. Risk estimation for a malignant transformation of oral lesions by S100 A7 and doc-1 gene expression. Cancer Investig. 2011;29:478–84.

    Article  CAS  Google Scholar 

  24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  26. D. Kraus, J. Reckenbeil, M. Wenghoefer, H. Stark, M. Frentzen, J.P. Allam, et al. Ghrelin promotes oral tumor cell proliferation by modifying GLUT1 expression. Cell Mol Life Sci. 2016.

  27. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    Article  CAS  PubMed  Google Scholar 

  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  29. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1971;227:680–5.

    Article  Google Scholar 

  30. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology. 1992;24:145–9.

    CAS  PubMed  Google Scholar 

  31. Wenghoefer M, Pantelis A, Dommisch H, Götz W, Reich R, Bergé S, Martini M, Allam JP, Jepsen S, Merkelbach-Bruse S, Fischer HP, Novak N, Winter J. Nuclear hBD-1 accumulation in malignant salivary gland tumours. BMC Cancer. 2008;8:290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pantelis A, Wenghoefer M, Haas S, Merkelbach-Bruse S, Pantelis D, Jepsen S, Bootz F, Winter J. Down regulation and nuclear localization of human β-defensin-1 in pleomorphic adenomas of salivary glands. Oral Oncol. 2009;45:526–30.

    Article  CAS  PubMed  Google Scholar 

  33. Joly S, Compton LM, Pujol C, Kurago ZB, Guthmiller JM. Loss of human beta-defensin 1, 2, and 3 expression in oral squamous cell carcinoma. Oral Microbiol Immunol. 2009;24:353–60.

    Article  CAS  PubMed  Google Scholar 

  34. Kesting MR, Loeffelbein DJ, Hasler RJ, Wolff KD, Rittig A, Schulte M, Hirsch T, Wagenpfeil S, Jacobsen F, Steinstraesser L. Expression profile of human beta-defensin 3 in oral squamous cell carcinoma. Cancer Investig. 2009;27:575–81.

    Article  CAS  Google Scholar 

  35. Bick RJ, Poindexter BJ, Buja LM, Lawyer CH, Milner SM, Bhat S. Nuclear lokalization of hBD-1 in human keratinocytes. J Burn Wounds. 2007;7:25–32.

    Google Scholar 

  36. Winter J, Pantelis A, Allam JP, Novak N, Reich R, Martini M, Bergé S, Deschner J, Jepsen S, Wenghoefer M. High α-defensin and S100 A7 expression and missing DOC-1 down-regulation characterize irritation fibromas of the oral cavity and may counteract malignant transformation. J Craniofac Surg. 2011;22:100–4.

    Article  PubMed  Google Scholar 

  37. Nakhjiri SF, Park Y, Yilmaz Ö, Chung WO, Watanabe K, El-Sabaeny A, Park K, Lamont RJ. Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol Lett. 2001;200:145–9.

    Article  CAS  PubMed  Google Scholar 

  38. Shimada T, Sugano N, Nishihara R, Suzuki K, Tanaka H, Ito K. Differential effects of five Aggregatibacter actinomycetemcomitans strains on gingival epithelial cells. Oral Microbiol Immunol. 2008;23:455–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kuboniwa M, Hasegawa Y, Mao S, Shizukuishi S, Amano A, Lamont RJ, Yilmaz Ö. P. Gingivalis accelerated gingival epithelial cell progression through the cell cycle. Microbes Infect. 2009;10:122–8.

    Article  Google Scholar 

  40. Kraus D, Winter J, Jepsen S, Jäger A, Meyer R, Deschner J. Interactions of adiponectin and lipopolysaccharide from Porphyromonas gingivalis on human oral epithelial cells. PLoS One. 2012;7(2):e30716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallimidi AB, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613–23.

    Article  PubMed Central  Google Scholar 

  42. Mas JM, Aloy P, Marti-Renom MA, Oliva B, de Llorens R, Avilés FX, Querol E. Classification of protein disulphide-bridge topologies. J Comp Aided Mol Des. 2001;15:477–87.

    Article  CAS  Google Scholar 

  43. Benitez BAS, Komives EA. Disulfide bond plasticity in epidermal growth factor. Proteins. 2000;40:168–74.

    Article  CAS  Google Scholar 

  44. Kim D, Dai J, Fai LY, Yao H, Son YO, Wang L, Prathesshkumar P, Kondo K, Shi X, Zhang Z. Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr (VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J Biol Chem. 2015;290(4):2213–24. doi:10.1074/jbc.M114.619783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Lalaouni and I. Beier for their technical assistance. TH, NN, MW, SJ, and JW were supported by a grant of the German Research Foundation (KFO 208; TH (TP9/10), NN (TP1), SJ (TP2), MW, and JW (TP10)) and the Medical Faculty of the University of Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Winter.

Ethics declarations

Conflicts of interest

None

Additional information

T. Hoppe and D. Kraus contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, T., Kraus, D., Novak, N. et al. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumor Biol. 37, 13789–13798 (2016). https://doi.org/10.1007/s13277-016-5281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5281-x

Keywords

Navigation