Skip to main content

Advertisement

Log in

Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment

  • Original Article
  • Published:
Tumor Biology

Abstract

Gastric cancer is an important health issue worldwide. Currently, improving the therapeutic efficacy of chemotherapy drugs is an important goal of cancer research. Alpha-7 nicotine acetylcholine receptor (A7-nAChR) is the key molecule that mediates gastric cancer progression, metastasis, and therapy responses; however, the role of A7-nAChR in the therapeutic efficacy of ixabepilone remains unclear. A7-nAChR expression was silenced by small interfering RNA (siRNA) technology. The cytotoxicity of ixabepilone was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and ixabepilone-induced apoptosis was analyzed by flow cytometry and annexin V/propidium iodide (PI) apoptotic assay. The expression patterns of anti-apoptotic proteins (AKT, phospho-AKT, Mcl-1, and Bcl-2) and pro-apoptotic proteins (Bad and Bax) were determined by western blot. Our study found that A7-nAChR knockdown (A7-nAChR-KD) AGS cells were more sensitive to ixabepilone administration than scrambled control AGS cells. We found that A7-nAChR knockdown enhanced ixabepilone-induced cell death as evidenced by the increased number of annexin V-positive (apoptotic) cells. After scrambled control and A7-nAChR-KD cells were treated with ixabepilone, we found that pAKT and AKT levels were significantly reduced in both groups of cells. The levels of Bcl-2 and the anti-apoptotic Mcl-1 isoform increased dramatically after ixabepilone treatment in scrambled control cells but not in A7-nAChR-KD cells. Bad and Bax levels did not change between the treatment group and vehicle group in both A7-nAChR-KD and scrambled control cells, whereas cleaved PARP levels dramatically increased in ixabepilone-treated A7-nAChR-KD cells. Our results demonstrated that knockdown of A7-nAChR enhanced the sensitivity of gastric cancer cells to ixabepilone administration. Thus, the A7-nAChR expression level in patients with gastric cancer may be a good indicator of ixabepilone sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A7-nAChR:

Alpha-7 nicotine acetylcholine receptor

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  3. de la Torre BA, Kettenhofen Enriquez W, Roesch Dietlen F, Rodriguez Moguel L, Mejia Novelo A, Peniche BJ. Diagnosis and treatment guideline of gastric cancer. Epidemiology, risk factors, histologic varieties and natural history. Rev Gastroenterol Mex. 2010;75:237–9.

    Google Scholar 

  4. Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345:725–30.

    Article  CAS  PubMed  Google Scholar 

  5. Graziano F, Catalano V, Baldelli AM, Giordani P, Testa E, Lai V, et al. A phase II study of weekly docetaxel as salvage chemotherapy for advanced gastric cancer. Ann Oncol. 2000;11:1263–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bang YJ, Kang WK, Kang YK, Kim HC, Jacques C, Zuber E, et al. Docetaxel 75 mg/m(2) is active and well tolerated in patients with metastatic or recurrent gastric cancer: a phase II trial. Jpn J Clin Oncol. 2002;32:248–54.

    Article  PubMed  Google Scholar 

  7. Ohtsu A, Boku N, Tamura F, Muro K, Shimada Y, Saigenji K, et al. An early phase II study of a 3-hour infusion of paclitaxel for advanced gastric cancer. Am J Clin Oncol. 1998;21:416–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bode CJ, Gupta Jr ML, Reiff EA, Suprenant KA, Georg GI, Himes RH. Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry. 2002;41:3870–4.

    Article  CAS  PubMed  Google Scholar 

  9. Vahdat L. Ixabepilone: a novel antineoplastic agent with low susceptibility to multiple tumor resistance mechanisms. Oncologist. 2008;13:214–21.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng KL, Bradley T, Budman DR. Novel microtubule-targeting agents—the epothilones. Biologics. 2008;2:789–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moulder S, Li H, Wang M, Gradishar WJ, Perez EA, Sparano JA, et al. A phase II trial of trastuzumab plus weekly ixabepilone and carboplatin in patients with HER2-positive metastatic breast cancer: an Eastern Cooperative Oncology Group Trial. Breast Cancer Res Treat. 2010;119:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sparano JA, Vrdoljak E, Rixe O, Xu B, Manikhas A, Medina C, et al. Randomized phase III trial of ixabepilone plus capecitabine versus capecitabine in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol. 2010;28:3256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas ES. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol. 2008;26:2223.

    Article  PubMed  Google Scholar 

  14. Liu G, Chen YH, Dipaola R, Carducci M, Wilding G. Phase II trial of weekly ixabepilone in men with metastatic castrate-resistant prostate cancer (E3803): a trial of the Eastern Cooperative Oncology Group. Clin Genitourin Cancer. 2012;10:99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harzstark AL, Rosenberg JE, Weinberg VK, Sharib J, Ryan CJ, Smith DC, et al. Ixabepilone, mitoxantrone, and prednisone for metastatic castration-resistant prostate cancer after docetaxel-based therapy: a phase 2 study of the Department of Defense Prostate Cancer Clinical Trials Consortium. Cancer. 2011;117:2419–25.

    Article  CAS  PubMed  Google Scholar 

  16. Rocha Lima CM, Lin EH, Kim GP, Giguere JK, Marshall J, Zalupski M, et al. A phase 2 trial of ixabepilone plus cetuximab in first-line treatment of metastatic pancreatic cancer. Gastrointest Cancer Res. 2012;5:155–60.

    PubMed  PubMed Central  Google Scholar 

  17. Edelman MJ, Schneider CP, Tsai CM, Kim HT, Quoix E, Luft AV, et al. Randomized phase II study of ixabepilone or paclitaxel plus carboplatin in patients with non-small-cell lung cancer prospectively stratified by beta-3 tubulin status. J Clin Oncol. 2013;31:1990–6.

    Article  CAS  PubMed  Google Scholar 

  18. Dizon DS, Blessing JA, McMeekin DS, Sharma SK, Disilvestro P, Alvarez RD. Phase II trial of ixabepilone as second-line treatment in advanced endometrial cancer: gynecologic oncology group trial 129-P. J Clin Oncol. 2009;27:3104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vishnu P, Colon-Otero G, Kennedy GT, Marlow LA, Kennedy WP, Wu KJ, et al. RhoB mediates antitumor synergy of combined ixabepilone and sunitinib in human ovarian serous cancer. Gynecol Oncol. 2012;124:589–97.

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Menefee M, Edgerly M, Zhuang S, Kotz H, Poruchynsky M, et al. A phase II clinical trial of ixabepilone (Ixempra; BMS-247550; NSC 710428), an epothilone B analog, in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2010;16:1634–41.

    Article  CAS  PubMed  Google Scholar 

  21. Ho J, Zhang L, Todorova L, Whillans F, Corey-Lisle P, Yuan Y. Budget impact analysis of ixabepilone used according to FDA approved labeling in treatment-resistant metastatic breast cancer. J Manag Care Pharm. 2009;15:467–75.

    PubMed  Google Scholar 

  22. Guo JZ, Tredway TL, Chiappinelli VA. Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. J Neurosci. 1998;18:1963–9.

    CAS  PubMed  Google Scholar 

  23. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20:92–8.

    Article  CAS  PubMed  Google Scholar 

  24. Dujic Z, Roerig DL, Schedewie HK, Kampine JP, Bosnjak ZJ. Presynaptic modulation of ganglionic ACh release by muscarinic and nicotinic receptors. Am J Physiol. 1990;259:R288–93.

    CAS  PubMed  Google Scholar 

  25. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001;411:269–76.

    Article  CAS  PubMed  Google Scholar 

  26. Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009;124:36–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest. 2002;110:527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med. 2003;9:125–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei PL, Chang YJ, Ho YS, Lee CH, Yang YY, An J, et al. Tobacco-specific carcinogen enhances colon cancer cell migration through alpha7-nicotinic acetylcholine receptor. Ann Surg. 2009;249:978–85.

    Article  PubMed  Google Scholar 

  30. Tu CC, Huang CY, Cheng WL, Hung CS, Uyanga B, Wei PL, Chang YJ. The alpha7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to taxanes. Tumour Biol. 2015

  31. Wozniak KM, Nomoto K, Lapidus RG, Wu Y, Carozzi V, Cavaletti G, et al. Comparison of neuropathy-inducing effects of eribulin mesylate, paclitaxel, and ixabepilone in mice. Cancer Res. 2011;71:3952–62.

    Article  CAS  PubMed  Google Scholar 

  32. Lien YC, Wang W, Kuo LJ, Liu JJ, Wei PL, Ho YS, et al. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells. Ann Surg Oncol. 2011;18:2671–9.

    Article  PubMed  Google Scholar 

  33. Wei PL, Kuo LJ, Huang MT, Ting WC, Ho YS, Wang W, et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann Surg Oncol. 2011;18:1782–90.

    Article  PubMed  Google Scholar 

  34. Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci U S A. 2008;105:3690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chen WY, Huang CY, Cheng WL, Hung CS, Huang MT, Tai CJ, et al. Alpha 7-nicotinic acetylcholine receptor mediates the sensitivity of gastric cancer cells to 5-fluorouracil. Tumour Biol. 2015;36:9537–44.

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Chin-Sheng H, Kuo LJ, Wei PL, Lien YC, Lin FY, et al. NNK enhances cell migration through alpha7-nicotinic acetylcholine receptor accompanied by increased of fibronectin expression in gastric cancer. Ann Surg Oncol. 2012;19 Suppl 3:S580–8.

    Article  PubMed  Google Scholar 

  38. Chang YJ, Tai CJ, Kuo LJ, Wei PL, Liang HH, Liu TZ, et al. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma. Ann Surg Oncol. 2011;18:2395–403.

    Article  PubMed  Google Scholar 

  39. Chang YJ, Huang CY, Hung CS, Liu HH, Wei PL. Glucose-regulated protein 78 mediates the therapeutic efficacy of 17-DMAG in colon cancer cells. Tumour Biol. 2015;36:4367–76.

    Article  CAS  PubMed  Google Scholar 

  40. Chang YJ, Huang CY, Hung CS, Chen WY, Wei PL. GRP78 mediates the therapeutic efficacy of curcumin on colon cancer. Tumour Biol. 2015;36:633–41.

    Article  CAS  PubMed  Google Scholar 

  41. Kim D, Dan HC, Park S, Yang L, Liu Q, Kaneko S, et al. AKT/PKB signaling mechanisms in cancer and chemoresistance. Front Biosci. 2005;10:975–87.

    Article  CAS  PubMed  Google Scholar 

  42. Nam SY, Lee HS, Jung GA, Choi J, Cho SJ, Kim MK, et al. Akt/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis. APMIS. 2003;111:1105–13.

    Article  CAS  PubMed  Google Scholar 

  43. Sasaki T, Kuniyasu H. Significance of AKT in gastric cancer (Review). Int J Oncol. 2014;45:2187–92.

    CAS  PubMed  Google Scholar 

  44. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol. 2007;221:261–7.

    Article  CAS  PubMed  Google Scholar 

  45. Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, et al. Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia. 2012;14:1102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuge K, Kikuchi E, Hagiwara M, Yasumizu Y, Tanaka N, Kosaka T, et al. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/mTOR pathway in bladder cancer. Mol Cancer Ther. 2015;14:2112–20.

    Article  CAS  PubMed  Google Scholar 

  47. De Rosa MJ, Esandi Mdel C, Garelli A, Rayes D, Bouzat C. Relationship between alpha 7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol. 2005;160:154–61.

    Article  PubMed  Google Scholar 

  48. Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci U S A. 2000;97:2904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol. 1999;17:1061–70.

    Article  CAS  PubMed  Google Scholar 

  50. Horwitz SB, Cohen D, Rao S, Ringel I, Shen HJ, Yang CP. Taxol: mechanisms of action and resistance. J Natl Cancer Inst Monogr. 1993:55–61

  51. Chen RJ, Ho YS, Guo HR, Wang YJ. Long-term nicotine exposure-induced chemoresistance is mediated by activation of Stat3 and downregulation of ERK1/2 via nAChR and beta-adrenoceptors in human bladder cancer cells. Toxicol Sci. 2010;115:118–30.

    Article  CAS  PubMed  Google Scholar 

  52. Murakami D, Tsujitani S, Osaki T, Saito H, Katano K, Tatebe S, et al. Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer. 2007;10:45–51.

    Article  CAS  PubMed  Google Scholar 

  53. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 2005;117:376–80.

    Article  CAS  PubMed  Google Scholar 

  54. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362:2295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shao XM, Feldman JL. Central cholinergic regulation of respiration: nicotinic receptors. Acta Pharmacol Sin. 2009;30:761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Solinas M, Scherma M, Fattore L, Stroik J, Wertheim C, Tanda G, et al. Nicotinic alpha 7 receptors as a new target for treatment of cannabis abuse. J Neurosci. 2007;27:5615–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Science Council, Taiwan (Grant No. NSC101-2314-B-038-016-MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Jia Chang or Po-Li Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, CC., Huang, CY., Cheng, WL. et al. Silencing A7-nAChR levels increases the sensitivity of gastric cancer cells to ixabepilone treatment. Tumor Biol. 37, 9493–9501 (2016). https://doi.org/10.1007/s13277-015-4751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4751-x

Keywords

Navigation