Skip to main content

Advertisement

Log in

CD20-negative diffuse large B cell lymphoma: a comprehensive analysis of 695 cases

  • Original Article
  • Published:
Tumor Biology

Abstract

CD20 expression is absent in a variety of diffuse large B cell lymphomas (DLBCLs), including plasmablastic lymphoma, primary effusion lymphoma, anaplastic lymphoma, kinase-positive DLBCL, and large B cell lymphoma arising in human herpesvirus 8-associated multicentric Castleman disease. These rare and heterogeneous tumors are characterized by the presence of proliferating immunoblasts with similar transcriptional profiles as those of plasma cells and are typically associated with highly aggressive pathologies, with high levels of chemotherapy resistance and low survival rates; thus, they pose significant diagnostic and treatment challenges. We conducted a systematic literature review of the limited existing clinical data to summarize the current knowledge regarding the biological basis, diagnostic limits, and potential therapeutic targets of distinct variants of CD20-negative DLBCL. This review will hopefully increase the awareness of these rare disorders among clinicians and pathologists and prompt basic and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klein U, Dalla-Favera R. Unexpected steps in plasma-cell differentiation. Immunity. 2007;26:543–4.

    Article  CAS  PubMed  Google Scholar 

  2. Klein U, Dalla-Favera R. Germinal centres: role in b-cell physiology and malignancy. Nat Rev Immunol. 2008;8:22–33.

    Article  CAS  PubMed  Google Scholar 

  3. Shaffer AL, Lin KI, Kuo TC, Yu X, Hurt EM, Rosenwald A, et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature b cell gene expression program. Immunity. 2002;17:51–62.

    Article  CAS  PubMed  Google Scholar 

  4. Montes-Moreno S, Gonzalez-Medina AR, Rodriguez-Pinilla SM, Maestre L, Sanchez-Verde L, Roncador G, et al. Aggressive large b-cell lymphoma with plasma cell differentiation: Immunohistochemical characterization of plasmablastic lymphoma and diffuse large b-cell lymphoma with partial plasmablastic phenotype. Haematologica. 2010;95:1342–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Swerdllow S, Campo E, Harris NL. Who classification of tumours of haematopoietic and lymphoid tissues. France: IARC Press; 2008. 2008.

    Google Scholar 

  6. Delecluse HJ, Anagnostopoulos I, Dallenbach F, Hummel M, Marafioti T, Schneider U, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    CAS  PubMed  Google Scholar 

  7. Borenstein J, Pezzella F, Gatter KC. Plasmablastic lymphomas may occur as post-transplant lymphoproliferative disorders. Histopathology. 2007;51:774–7.

    Article  CAS  PubMed  Google Scholar 

  8. Campo E, Chott A, Kinney MC, Leoncini L, Meijer CJ, Papadimitriou CS, et al. Update on extranodal lymphomas, conclusions of the workshop held by the eahp and the sh in Thessaloniki, Greece. Histopathology. 2006;48:481–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cannuyer J, Loriot A, Parvizi GK, De Smet C. Epigenetic hierarchy within the magea1 cancer-germline gene: promoter DNA methylation dictates local histone modifications. PLoS One. 2013;8:e58743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi J, Chang H. The expression of mage and ssx, and correlation of cox2, vegf, and survivin in colorectal cancer. Anticancer Res. 2012;32:559–64.

    CAS  PubMed  Google Scholar 

  11. Eichmuller S, Usener D, Thiel D, Schadendorf D. Tumor-specific antigens in cutaneous t-cell lymphoma: expression and sero-reactivity. Int J Cancer. 2003;104:482–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bohlius J, Schmidlin K, Costagliola D, Fatkenheuer G, May M, Caro Murillo AM, et al. Prognosis of hiv-associated non-Hodgkin lymphoma in patients starting combination antiretroviral therapy. AIDS. 2009;23:2029–37.

    Article  CAS  PubMed  Google Scholar 

  13. Castillo JJ, Winer ES, Stachurski D, Perez K, Jabbour M, Milani C, et al. Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma. Leuk Lymphoma. 2010;51:2047–53.

    Article  PubMed  Google Scholar 

  14. Morscio J, Dierickx D, Nijs J, Verhoef G, Bittoun E, Vanoeteren X, et al. Clinicopathologic comparison of plasmablastic lymphoma in hiv-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases. Am J Surg Pathol. 2014;38:875–86.

    Article  PubMed  Google Scholar 

  15. Adam P, Bonzheim I, Fend F, Quintanilla-Martinez L. Epstein-Barr virus-positive diffuse large b-cell lymphomas of the elderly. Adv Anat Pathol. 2011;18:349–55.

    Article  CAS  PubMed  Google Scholar 

  16. Knecht H, Berger C, Rothenberger S, Odermatt BF, Brousset P. The role of Epstein-Barr virus in neoplastic transformation. Oncology. 2001;60:289–302.

    Article  CAS  PubMed  Google Scholar 

  17. Bibas M, Antinori A. Ebv and hiv-related lymphoma. Mediterranean J Hematol Infect Dis. 2009;1:e2009032.

    Google Scholar 

  18. Aboulafia DM, Ratner L, Miles SA, Harrington Jr WJ. Antiviral and immunomodulatory treatment for aids-related primary central nervous system lymphoma: aids malignancies consortium pilot study 019. Clin Lymphoma Myeloma. 2006;6:399–402.

    Article  CAS  PubMed  Google Scholar 

  19. Castillo JJ, Furman M, Beltran BE, Bibas M, Bower M, Chen W, et al. Human immunodeficiency virus-associated plasmablastic lymphoma: poor prognosis in the era of highly active antiretroviral therapy. Cancer. 2012;118:5270–7.

    Article  PubMed  Google Scholar 

  20. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Valera A, Balague O, Colomo L, Martinez A, Delabie J, Taddesse-Heath L, et al. Ig/myc rearrangements are the main cytogenetic alteration in plasmablastic lymphomas. Am J Surg Pathol. 2010;34:1686–94.

    PubMed  PubMed Central  Google Scholar 

  22. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. C-myc regulates transcriptional pause release. Cell. 2010;141:432–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. Bet bromodomain inhibition as a therapeutic strategy to target c-myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hermiston ML, Xu Z, Weiss A. Cd45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol. 2003;21:107–37.

    Article  CAS  PubMed  Google Scholar 

  25. Justement LB. The role of the protein tyrosine phosphatase cd45 in regulation of b lymphocyte activation. Int Rev Immunol. 2001;20:713–38.

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira DM, Goodell MA. Transient rna interference in hematopoietic progenitors with functional consequences. Genesis. 2003;36:203–8.

    Article  CAS  PubMed  Google Scholar 

  27. Baker M, Gamble J, Tooze R, Higgins D, Yang FT, O'Brien PC, et al. Development of t-leukaemias in cd45 tyrosine phosphatase-deficient mutant lck mice. EMBO J. 2000;19:4644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carbone A, Vaccher E, Gloghini A, Pantanowitz L, Abayomi A, de Paoli P, et al. Diagnosis and management of lymphomas and other cancers in hiv-infected patients. Nat Rev Clin Oncol. 2014;11:223–38.

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro-Shelef M, Lin K-I, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory b cells. Immunity. 2003;19:607–20.

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Hou Y, Hu Q, Su J, Zeng H, Tan Y. A rare case of hhv-8-positive/hiv-negative/ebv-negative primary effusion lymphoma in a renal transplant recipient. Cytopathology. 2012;23:137–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jaffe ES. The 2008 who classification of lymphomas: implications for clinical practice and translational research. Hematol Am Soc Hematol Educ Prog. 2009;2009:523–31.

    Google Scholar 

  32. Trivedi P, Takazawa K, Zompetta C, Cuomo L, Anastasiadou E, Carbone A, et al. Infection of hhv-8+ primary effusion lymphoma cells with a recombinant Epstein-Barr virus leads to restricted ebv latency, altered phenotype, and increased tumorigenicity without affecting tcl1 expression. Blood. 2004;103:313–6.

    Article  CAS  PubMed  Google Scholar 

  33. Castillo JJ, Shum H, Lahijani M, Winer ES, Butera JN. Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk Lymphoma. 2012;53:2378–82.

    Article  CAS  PubMed  Google Scholar 

  34. Bhatt S, Ashlock B, Natkunam Y, Ramos JC, Mesri E, Lossos IS: Preclinical activity of brentuximab vedotin (sgn-35) in primary effusion lymphoma (pel) clinically relevant abstract, 2011

  35. Kim Y, Park CJ, Roh J, Huh J. Current concepts in primary effusion lymphoma and other effusion-based lymphomas. Korean J Pathol. 2014;48:81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boulanger E, Agbalika F, Maarek O, Daniel MT, Grollet L, Molina JM, et al. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in hiv-infected patients. Hematol J. 2001;2:172–9.

    Article  CAS  PubMed  Google Scholar 

  37. Komanduri KV, Luce JA, McGrath MS, Herndier BG, Ng VL. The natural history and molecular heterogeneity of hiv-associated primary malignant lymphomatous effusions. J Acquir Immune Defic Syndr Hum Retrovirol. 1996;13:215–26.

    Article  CAS  PubMed  Google Scholar 

  38. Soulier J, Grollet L, Oksenhendler E, Miclea JM, Cacoub P, Baruchel A, et al. Molecular analysis of clonality in castleman’s disease. Blood. 1995;86:1131–8.

    CAS  PubMed  Google Scholar 

  39. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  40. Siddiqi T, Joyce RM. A case of hiv-negative primary effusion lymphoma treated with bortezomib, pegylated liposomal doxorubicin, and rituximab. Clin Lymphoma Myeloma. 2008;8:300–4.

    Article  CAS  PubMed  Google Scholar 

  41. Spina M, Gaidano G, Carbone A, Capello D, Tirelli U. Highly active antiretroviral therapy in human herpesvirus-8-related body-cavity-based lymphoma. AIDS. 1998;12:955–6.

    CAS  PubMed  Google Scholar 

  42. Aoki Y, Tosato G. Hiv-1 tat enhances Kaposi sarcoma-associated herpesvirus (kshv) infectivity. Blood. 2004;104:810–4.

    Article  CAS  PubMed  Google Scholar 

  43. Delsol G, Lamant L, Mariame B, Pulford K, Dastugue N, Brousset P, et al. A new subtype of large b-cell lymphoma expressing the alk kinase and lacking the 2; 5 translocation. Blood. 1997;89:1483–90.

    CAS  PubMed  Google Scholar 

  44. Laurent C, Do C, Gascoyne RD, Lamant L, Ysebaert L, Laurent G, et al. Anaplastic lymphoma kinase-positive diffuse large b-cell lymphoma: a rare clinicopathologic entity with poor prognosis. J Clin Oncol. 2009;27:4211–6.

    Article  PubMed  Google Scholar 

  45. Lee SE, Kang SY, Takeuchi K, Ko YH. Identification of ranbp2-alk fusion in alk positive diffuse large b-cell lymphoma. Hematol Oncol. 2014;32:221–4.

    Article  CAS  PubMed  Google Scholar 

  46. Takeuchi K, Soda M, Togashi Y, Ota Y, Sekiguchi Y, Hatano S, et al. Identification of a novel fusion, sqstm1-alk, in alk-positive large b-cell lymphoma. Haematologica. 2011;96:464–7.

    Article  CAS  PubMed  Google Scholar 

  47. Van Roosbroeck K, Cools J, Dierickx D, Thomas J, Vandenberghe P, Stul M, et al. Alk-positive large b-cell lymphomas with cryptic sec31a-alk and npm1-alk fusions. Haematologica. 2010;95:509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Paepe P, Baens M, van Krieken H, Verhasselt B, Stul M, Simons A, et al. Alk activation by the cltc-alk fusion is a recurrent event in large b-cell lymphoma. Blood. 2003;102:2638–41.

    Article  CAS  PubMed  Google Scholar 

  49. Adam P, Katzenberger T, Seeberger H, Gattenlohner S, Wolf J, Steinlein C, et al. A case of a diffuse large b-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol. 2003;27:1473–6.

    Article  PubMed  Google Scholar 

  50. Onciu M, Behm FG, Downing JR, Shurtleff SA, Raimondi SC, Ma Z, et al. Alk-positive plasmablastic b-cell lymphoma with expression of the npm-alk fusion transcript: report of 2 cases. Blood. 2003;102:2642–4.

    Article  CAS  PubMed  Google Scholar 

  51. d'Amore ES, Visco C, Menin A, Famengo B, Bonvini P, Lazzari E. Stat3 pathway is activated in alk-positive large b-cell lymphoma carrying sqstm1-alk rearrangement and provides a possible therapeutic target. Am J Surg Pathol. 2013;37:780–6.

    Article  PubMed  Google Scholar 

  52. Nieborowska-Skorska M, Slupianek A, Xue L, Zhang Q, Raghunath PN, Hoser G, et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res. 2001;61:6517–23.

    CAS  PubMed  Google Scholar 

  53. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, et al. Anaplastic lymphoma kinase (alk) activates stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21:1038–47.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Q, Wang HY, Liu X, Wasik MA. Stat5a is epigenetically silenced by the tyrosine kinase npm1-alk and acts as a tumor suppressor by reciprocally inhibiting npm1-alk expression. Nat Med. 2007;13:1341–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/akt antiapoptotic signaling pathway. Blood. 2000;96:4319–27.

    CAS  PubMed  Google Scholar 

  56. Li J, Ouyang J, Zhou R, Chen B, Xu Y. Promising response of anaplastic lymphoma kinase-positive large b-cell lymphoma to crizotinib salvage treatment: case report and review of literature. Int J Clin Exp Med. 2015;8:6977–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wass M, Behlendorf T, Schadlich B, Mottok A, Rosenwald A, Schmoll HJ, et al. Crizotinib in refractory alk-positive diffuse large b-cell lymphoma: a case report with a short-term response. Eur J Haematol. 2014;92:268–70.

    Article  CAS  PubMed  Google Scholar 

  58. Horibe K, Braiteh F, Huang H-q, Shi Y, Taylor MH, Brega N, et al. Safety and clinical activity of crizotinib in patients with alk-rearranged hematologic malignancies. Blood. 2013;122:4342.

    Google Scholar 

  59. Cerchietti L, Damm-Welk C, Vater I, Klapper W, Harder L, Pott C, et al. Inhibition of anaplastic lymphoma kinase (alk) activity provides a therapeutic approach for cltc-alk-positive human diffuse large b cell lymphomas. PLoS One. 2011;6:e18436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oksenhendler E, Boulanger E, Galicier L, Du MQ, Dupin N, Diss TC, et al. High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with hiv infection and multicentric castleman disease. Blood. 2002;99:2331–6.

    Article  CAS  PubMed  Google Scholar 

  61. Jaffe ES. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. France: Iarc; 2001.

    Google Scholar 

  62. Du MQ, Liu H, Diss TC, Ye H, Hamoudi RA, Dupin N, et al. Kaposi sarcoma-associated herpesvirus infects monotypic (igm lambda) but polyclonal naive b cells in castleman disease and associated lymphoproliferative disorders. Blood. 2001;97:2130–6.

    Article  CAS  PubMed  Google Scholar 

  63. Oksenhendler E, Carcelain G, Aoki Y, Boulanger E, Maillard A, Clauvel JP, et al. High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and c reactive protein correlate with exacerbation of multicentric castleman disease in hiv-infected patients. Blood. 2000;96:2069–73.

    CAS  PubMed  Google Scholar 

  64. Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ, et al. Nf-kappab is essential for the progression of kshv- and ebv-infected lymphomas in vivo. Blood. 2006;107:3295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mylona EE, Baraboutis IG, Lekakis LJ, Georgiou O, Papastamopoulos V, Skoutelis A. Multicentric castleman’s disease in hiv infection: a systematic review of the literature. AIDS Rev. 2008;10:25–35.

    PubMed  Google Scholar 

  66. Zeng Y, Zhang X, Huang Z, Cheng L, Yao S, Qin D, et al. Intracellular tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of jak/stat signaling. J Virol. 2007;81:2401–17.

    Article  CAS  PubMed  Google Scholar 

  67. Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R. Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol. 2015;42:223–46.

    Article  PubMed  Google Scholar 

  68. Gerard L, Michot JM, Burcheri S, Fieschi C, Longuet P, Delcey V, et al. Rituximab decreases the risk of lymphoma in patients with hiv-associated multicentric castleman disease. Blood. 2012;119:2228–33.

    Article  CAS  PubMed  Google Scholar 

  69. Uldrick TS, Polizzotto MN, Aleman K, Wyvill KM, Marshall V, Whitby D, et al. Rituximab plus liposomal doxorubicin in hiv-infected patients with kshv-associated multicentric castleman disease. Blood. 2014;124:3544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, et al. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A. 2010;107:13069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

JL and SZ contributed equally to this work. JL searched the literature, collected and analyzed the data, and wrote the manuscript. SZ developed the concept for this article and provided critical reviews of all drafts. JXW, JYC ,and WW collected the data. QYZ read and approved the final draft and made the decision to submit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyuan Zhang.

Ethics declarations

Conflicts of interest

None

Additional information

Jing Li and Shu Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 36 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, S., Wang, J. et al. CD20-negative diffuse large B cell lymphoma: a comprehensive analysis of 695 cases. Tumor Biol. 37, 3619–3637 (2016). https://doi.org/10.1007/s13277-015-4205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4205-5

Keywords

Navigation