Skip to main content

Advertisement

Log in

IRF7 promotes glioma cell invasion by inhibiting AGO2 expression

  • Research Article
  • Published:
Tumor Biology

Abstract

Interferon regulatory factor 7 (IRF7) is the master transcription factor that plays a pivotal role in the transcriptional activation of type I interferon genes in the inflammatory response. Our previous study revealed that IRF7 is an important regulator of tumor progression via the expression of inflammatory cytokines in glioma. Here, we report that IRF7 promotes glioma invasion and confers resistance to both chemotherapy and radiotherapy by inhibiting expression of argonaute 2 (AGO2), a regulator of microRNA biogenesis. We found that IRF7 and AGO2 expression levels were negatively correlated in patients with glioblastoma multiforme. Ectopic IRF7 expression led to a reduction in AGO2 expression, while depletion of IRF7 resulted in increased AGO2 expression in the LN-229 glioma cell line. In an in vitro invasion assay, IRF7 overexpression enhanced glioma cell invasion. Furthermore, reconstitution of AGO2 expression in IRF7-overexpressing cells led to decreased cell invasion, whereas the reduced invasion due to IRF7 depletion was rescued by AGO2 depletion. In addition, IRF7 induced chemoresistance and radioresistance of glioma cells by diminishing AGO2 expression. Finally, AGO2 depletion alone was sufficient to accelerate glioma cell invasion in vitro and in vivo, indicating that AGO2 regulates cancer cell invasion. Taken together, our results indicate that IRF7 promotes glioma cell invasion and both chemoresistance and radioresistance through AGO2 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  3. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavanee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.

    Article  CAS  PubMed  Google Scholar 

  4. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21:1624–36.

    Article  CAS  PubMed  Google Scholar 

  5. Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 2005;15:87–96.

    Article  CAS  PubMed  Google Scholar 

  6. Ortensi B, Setti M, Osti D, Pelicci G. Cancer stem cell contribution to glioblastoma invasiveness. Stem Cell Res Ther. 2013;4:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.

    Article  CAS  PubMed  Google Scholar 

  8. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102:639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 2010;29:243–8.

    Article  CAS  PubMed  Google Scholar 

  10. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  11. Radisky ES, Radisky DC. Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord. 2007;8:279–87.

    Article  PubMed  Google Scholar 

  12. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  15. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.

    Article  CAS  PubMed  Google Scholar 

  16. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu X, Rennard SI. MicroRNA and cytokines. Mol Cell Pharmacol. 2011;3:143–51.

    CAS  Google Scholar 

  18. Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine. 2009;45:58–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson P. Post-transcriptional control of cytokine production. Nat Immunol. 2008;9:353–9.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell. 2011;44:424–36.

    Article  CAS  PubMed  Google Scholar 

  21. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.

    Article  CAS  PubMed  Google Scholar 

  22. Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene. 2008;27:1788–93.

    Article  CAS  PubMed  Google Scholar 

  23. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  25. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A microRNA targeting dicer for metastasis control. Cell. 2010;141:1195–207.

    Article  CAS  PubMed  Google Scholar 

  26. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96:111–5.

    Article  CAS  PubMed  Google Scholar 

  27. Selever J, Gu G, Lewis MT, Beyer A, Herynk MH, Covington KR, et al. Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res. 2011;17:6510–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin X, Kim SH, Jeon HM, Beck S, Sohn YW, Yin Y, et al. Interferon regulatory factor 7 regulates glioma stem cells via interleukin-6 and notch signaling. Brain. 2012;135:1055–69.

    Article  PubMed  Google Scholar 

  29. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  30. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM, et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.

    Article  CAS  PubMed  Google Scholar 

  32. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465:584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 2010;328:1694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim MS, Oh JE, Kim YR, Park SW, Kang MR, Kim SS, et al. Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol. 2010;221:139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Völler D, Reinders J, Meister G, Bosserhoff AK. Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer. 2013;109:3116–24.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hagiwara K, Kosaka N, Yoshioka Y, Takahashi RU, Takeshita F, Ochiya T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep. 2012;2:314.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang X, Graves P, Zeng Y. Overexpression of human Argonaute2 inhibits cell and tumor growth. Biochim Biophys Acta. 1830;2013:2553–61.

    Google Scholar 

  38. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111–22.

    Article  PubMed  Google Scholar 

  39. Raisch J, Darfeuille-Michaud A, Nguyen HT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 2013;19:2985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol. 2010;10:24–35.

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, et al. Quantitative functions of argonaute proteins in mammalian development. Genes Dev. 2012;26:693–704.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460:479–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol. 2010;52:698–704.

    Article  CAS  PubMed  Google Scholar 

  44. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29:4194–204.

    Article  CAS  PubMed  Google Scholar 

  46. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17:193–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon JE, Kim BY, Kwak SY, Bae IH, Han YH. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1. Apoptosis. 2013;18:896–909.

    Article  CAS  PubMed  Google Scholar 

  48. Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y, et al. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res. 2011;71:6208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alexander S, Friedl P. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med. 2012;18:13–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of the Cell Growth Regulation Laboratory for the helpful discussion and technical assistance. This work was supported by the National Nuclear Technology Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (no. 2013M2A2A7042530 to H. Kim) and the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (no. 2011–0024089 to S.-H. Kim). S.W. Ham was supported by a Kwanjeong Educational Foundation Domestic Scholarship.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Hak Kim or Hyunggee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JK., Jin, X., Ham, S.W. et al. IRF7 promotes glioma cell invasion by inhibiting AGO2 expression. Tumor Biol. 36, 5561–5569 (2015). https://doi.org/10.1007/s13277-015-3226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3226-4

Keywords

Navigation