Skip to main content
Log in

FoxM1 contributes to progestin resistance and epithelial-to-mesenchymal transition in endometrial carcinoma

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Progestin resistance remains a major issue that is urgently needed to solve in progestin therapy for patients with endometrial carcinoma (EC). Increasing research indicated the critical role of FoxM1 in drug resistance of diverse cancers.

Objective

This study aims to explore whether FoxM1 contributes to medroxyprogesterone acetate (MPA, a commonly used progestin) resistance in EC.

Results

It was observed that FoxM1 is highly expressed in MPA-resistant ECC-1 (ECC-1/MPA) cells at both protein and mRNA levels when compared with ECC-1 cells. Knocking down FoxM1 in ECC-1/MPA cells significantly decreased the IC50 value of MPA, and rendered ECC-1/MPA cells more sensitive to MPA treatment. In vivo assay exhibited a similar tendency. Simultaneously, FoxM1 knockdown also suppressed proliferation, migration, and invasion of ECC-1/MPA cells. Furthermore, FoxM1 knockdown also suppressed epithelial-to-mesenchymal transition (EMT), as revealed by an elevation in E-cadherin expression and a decrease in N-cadherin and Vimentin expressions in ECC-1/MPA cells.

Conclusion

These findings indicated the role of FoxM1 in the MPA resistance of EC. Down-regulated FoxM1 expression might be a potential strategy for overcoming MPA resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brooks RA et al (2019) Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin 69(4):258–279

    PubMed  Google Scholar 

  • Carr JR et al (2010) FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res 70(12):5054–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai D et al (2002) Progesterone inhibits human endometrial cancer cell growth and invasiveness: down-regulation of cellular adhesion molecules through progesterone B receptors. Cancer Res 62(3):881–886

    CAS  PubMed  Google Scholar 

  • Dai M et al (2017) Cholesterol synthetase DHCR24 induced by insulin aggravates cancer invasion and progesterone resistance in endometrial carcinoma. Sci Rep 7:41404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du B, Shim JS (2016) Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21(7):965

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y et al (2018) FOXM1 as a prognostic biomarker promotes endometrial cancer progression via transactivation of SLC27A2 expression. Int J Clin Exp Pathol 11(8):3846–3857

    PubMed  PubMed Central  Google Scholar 

  • Francis RE et al (2009) FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int J Oncol 35(1):57–68

    CAS  PubMed  Google Scholar 

  • Garzon S et al (2021) Fertility-sparing management for endometrial cancer: review of the literature. Minerva Med 112(1):55–69

    Article  PubMed  Google Scholar 

  • Gu C et al (2011) Inhibiting the PI3K/Akt pathway reversed progestin resistance in endometrial cancer. Cancer Sci 102(3):557–564

    Article  CAS  PubMed  Google Scholar 

  • Hou Y et al (2017) The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis 8(3):e2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen DM et al (2013) Progesterone receptor signaling in the microenvironment of endometrial cancer influences its response to hormonal therapy. Cancer Res 73(15):4697–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS et al (2014) Role of the epithelial-mesenchymal transition and its effects on embryonic stem cells. Exp Mol Med 46(8):e108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok JM et al (2010) FOXM1 confers acquired cisplatin resistance in breast cancer cells. Mol Cancer Res 8(1):24–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y et al (2015) FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 10(10):e0137703

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W et al (2012) Repression of endometrial tumor growth by targeting SREBP-1 and lipogenesis. Cell Cycle 11(12):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lortet-Tieulent J et al (2018) International patterns and trends in endometrial cancer incidence, 1978–2013. J Natl Cancer Inst 110(4):354–361

    Article  PubMed  Google Scholar 

  • Ma L et al (2021) Epithelial-to-mesenchymal transition contributes to the downregulation of progesterone receptor expression in endometriosis lesions. J Steroid Biochem Mol Biol 212:105943

    Article  CAS  PubMed  Google Scholar 

  • Markowska A et al (2014) Signalling pathways in endometrial cancer. Contemp Oncol (pozn) 18(3):143–148

    CAS  PubMed  Google Scholar 

  • Millour J et al (2010) FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene 29(20):2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson MB et al (2020) A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med 12:559

    Article  Google Scholar 

  • Park YY et al (2012) FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair. Carcinogenesis 33(10):1843–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226

    Article  CAS  PubMed  Google Scholar 

  • Pellerin GP, Finan MA (2005) Endometrial cancer in women 45 years of age or younger: a clinicopathological analysis. Am J Obstet Gynecol 193(5):1640–1644

    Article  PubMed  Google Scholar 

  • Reis FM et al (2020) Progesterone receptor ligands for the treatment of endometriosis: the mechanisms behind therapeutic success and failure. Hum Reprod Update 26(4):565–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders DA et al (2013) Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. Genome Biol 14(1):R6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ushijima K et al (2007) Multicenter phase II study of fertility-sparing treatment with medroxyprogesterone acetate for endometrial carcinoma and atypical hyperplasia in young women. J Clin Oncol 25(19):2798–2803

    Article  CAS  PubMed  Google Scholar 

  • Wang S et al (2003) Mechanisms involved in the evolution of progestin resistance in human endometrial hyperplasia–precursor of endometrial cancer. Gynecol Oncol 88(2):108–117

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2015) Glioblastoma multiforme formation and EMT: role of FoxM1 transcription factor. Curr Pharm Des 21(10):1268–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2018) Roles of SIRT1/FoxO1/SREBP-1 in the development of progestin resistance in endometrial cancer. Arch Gynecol Obstet 298(5):961–969

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2020) The critical role of dysregulated Hh-FOXM1-TPX2 signaling in human hepatocellular carcinoma cell proliferation. Cell Commun Signal 18(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada S et al (2019) Predictive value of 16α-[18F]-Fluoro-17β-estradiol PET as a biomarker of progestin therapy resistance in patients with atypical endometrial hyperplasia and low-grade endometrial cancer. Clin Nucl Med 44(7):574–575

    Article  PubMed  Google Scholar 

  • Yao S, Fan LY, Lam EW (2018) The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 50:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S et al (2013) Response-specific progestin resistance in a newly characterized Ishikawa human endometrial cancer subcell line resulting from long-term exposure to medroxyprogesterone acetate. Oncol Lett 5(1):139–144

    Article  CAS  PubMed  Google Scholar 

  • Zhao F et al (2014) Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance. PLoS One 9(11):e113478

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q et al (2019) DACH1 suppresses epithelial to mesenchymal transition (EMT) through Notch1 pathway and reverses progestin resistance in endometrial carcinoma. Cancer Med 8(9):4380–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have no acknowledgements.

Funding

This work was supported by the Set sail Foundation of Fujian Medical University (2019QH1117).

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: LW; data collection: all the authors; data analysis and interpretation: all the authors; drafting the article: LW; critical revision of the article: QS and SC; final approval of the version to be published: all the authors.

Corresponding author

Correspondence to Lianhua Wang.

Ethics declarations

Conflict of interest

Author Lianhua Wang declares that he/she has no conflict of interest. Author Qiyang Shi declares that he/she has no conflict of interest. Author Shaorong Chen declares that he/she has no conflict of interest.

Ethical approval

All procedures regarding animal were performed in accordance with the ethical standards as recommended by the International Committee of Medical Journal Editors and approved by the Medical Ethics Committee of the Second Affiliated Hospital of Fujian Medical University (Approved No. 416 [2020]).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Supplementary Information

Below is the link to the electronic supplementary material.

13273_2022_251_MOESM1_ESM.tif

Supplementary Figure S1 (A) The transfection of sh-FoxM1#1 or sh-FoxM1#2 in ECC-1/MPA cells was observed under a fluorescence microscope. (B) On Day 7, the volume of xenografts from sh-NC and sh-FoxM1 cell-transplanted mice was record. After 7-day inoculation, saline were intraperitoneally injected into mice for 30 consecutive days. (C) The growth curve of xenograft volume from day 7 to day 37. (D) On the 37th day post-inoculation, mice were sacrificed, and xenografts were collected and weight. *p < 0.05 and **p < 0.01 compared with sh-NC (TIF 7566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Shi, Q. & Chen, S. FoxM1 contributes to progestin resistance and epithelial-to-mesenchymal transition in endometrial carcinoma. Mol. Cell. Toxicol. 19, 229–236 (2023). https://doi.org/10.1007/s13273-022-00251-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-022-00251-z

Keywords

Navigation