Skip to main content
Log in

Transcriptome analysis for identifying possible causes of post-reproductive death of Sepia esculenta based on brain tissue

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

The subpeduncle lobe/olfactory lobe–optic gland axis is called the endocrine regulation center of cephalopods. However, little is known about the mechanism of the subpeduncle lobe/olfactory lobe-optic gland axis regulate the sexual maturation and post-reproductive death of Sepia esculenta Hoyle.

Objectives

The primary objective of this study was to provide basic information for revealing the mechanism of the subpeduncle lobe/olfactory lobe–optic axis regulating the rapid post-reproductive death of S. esculenta.

Methods

In this paper, Illumina sequencing based transcriptome analysis was performed on the brain tissue of female S. esculenta in the three key developmental stages: growth stage (BG), spawning stage (BS), and post-reproductive death stage (BA).

Results

A total of 66.19 Gb Illumina sequencing data were obtained. A comparative analysis of the three stages showed 2609, 3333, and 170 differentially expressed genes (DEGs) in BG-vs-BA, BG-vs-BA, and BS-vs-BA, respectively. The Gene Ontology (GO) enrichment analysis of DEGs revealed that the regulation of cyclin-dependent protein serine/threonine kinase activity, oxidative phosphorylation, and respiratory chain were significantly enriched. The significant enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway identified pathways associated with the regulation of death, such as the mammalian target of rapamycin (mTOR) signaling pathway, AMPK signaling pathway, oxidative phosphorylation, and cell cycle.

Conclusion

The post-reproductive death of S. esculenta was found to be a complex energy steady-state regulation network system. The mTOR acted as an energy receptor and had a key role in regulating energy homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

[modified from Laplante and Sabatini (2012)]

Similar content being viewed by others

References

  • Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, Brenner S, Ragsdale CW, Rokhsar DS (2015) The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian L, Liu CL, Chen SQ, Zhao FZ, Ge JL, Tan J (2018) Transcriptome analysis of gene expression patterns during embryonic development in golden cuttlefish (Sepia esculenta). Genes Genom 40:253–263

    Article  CAS  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT (1994) A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369(6483):756–758

    Article  CAS  PubMed  Google Scholar 

  • Copes N, Edwards C, Chaput D, Saifee M, Barjuca I, Nelson D, Paraggio A, Saad P, Lipps D, Stevens SM Jr, Bradshaw PC (2015) Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol 72:67–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota D, Proulx K, Blake Smith KA, Kozma Sara C, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  CAS  PubMed  Google Scholar 

  • Di Cristo C (2013) Nervous control of reproduction in Octopus vulgaris: a new model. Invert Neurosci 13:27–34

    Article  CAS  PubMed  Google Scholar 

  • Di Cosmo A, Di Cristo C (1998) Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. J Comp Neurol 398(1):1–12

    Article  PubMed  Google Scholar 

  • Diter F (1974) The subpeduncle lobe of the octopus brain: evidence for dual function. Brain Res 75:277–285

    Article  Google Scholar 

  • Fox TD (2016) Mitochondrial protein synthesis, import, and assembly. Genetics 192(4):1203–1234

    Article  CAS  Google Scholar 

  • Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A (2015) A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160(5):1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoving HJT, Lipinski MR, Videler JJ (2008) Reproductive system and the spermatophoric reaction of the mesopelagic squid Octopoteuthis sicula (Rüppell, 1844) (Cephalopoda: Octopoteuthidae) from southern African waters. Afr J Mar Sci 30:603–612

    Article  Google Scholar 

  • Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22(3):94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H (2001) Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun 2:562–567

    Article  CAS  Google Scholar 

  • Jiang J, Feng L, Liu Y, Jiang WD, Hu K, Li SH, Zhou XQ (2013) Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. GENE 512(2):566–572

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García MB, Menges ES, Quintana-Ascencio PF, Caswell H, Baudisch A, Vaupel JW (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S, Mather PB (2011) Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly,annotation and marker discovery. PLoS One 6(12):e27938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  • King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274(5293):1652–1659

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Kumar L, Futschik ME (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2(1):5–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Künstner A, Wolf JBW, Backstrom N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, Jarvis ED, Warren WC, Ellegren H (2010) Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 19(Suppl 1):266–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20):3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR Signaling. Csh Perspect Biol 4(2):1

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-323

    Article  Google Scholar 

  • Liang Y, Bao WL, Bao CC, Miao XF, Hao HF, Li SY, Wang ZG, Liu DJ (2012) Molecular characterization and functional analysis of Cashmere goat mammalian target of rapamycin. DNA Cell Biol 31(5):839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Zhao FZ, Yan JP, Liu CS, Liu SW, Chen SQ (2016) Transcriptome sequencing and de novo assembly of golden cuttlefish Sepia esculenta Hoyle. Int J Mol Sci 17:1749

    Article  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ∆∆Ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu ZM, Liu W, Liu LQ, Shi HL, Ping HL, Wang TM, Chi CF, Wu CW, Chen CH, Shen KN (2016) De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish (Sepiella japonica) with different gonadal development. Genom Data 7(C):155–158

    Article  PubMed  Google Scholar 

  • Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC (2002) Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283(3):E503–E513

    Article  CAS  PubMed  Google Scholar 

  • Messenger JB (1979) The nervous system of Loligo. IV. The peduncle and olfactory lobes. Philos Trans R Soc Lond B Biol Sci 285:275–308

    Article  Google Scholar 

  • Meter MV, Gorbunova V, Seluanov A (2016) Comparative biology of aging: insights from long-lived rodent species. Handbook of the Biology of Aging (8 Edition) 305–324 Academic Press: Cambridge

    Chapter  Google Scholar 

  • Minakata H, Shigeno S, Kano N, Haraguchi S, Osugi T, Tsutsui K (2009) Octopus gonadotrophin-releasing hormone: a multifunctional peptide in the endocrine and nervous systems of the cephalopod. J Neuroendocrinol 21:322–326

    Article  CAS  PubMed  Google Scholar 

  • Morrison CD, Xi XC, White CL, Ye JP, Martin RJ (2007) Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am J Physiol Endocrinol Metab 293(1):E165–E171

    Article  CAS  PubMed  Google Scholar 

  • Nesis KN (1987) Cephalopods of the world. Neptune City: T. F. H. Publications 1–15

    Google Scholar 

  • Park DC, Yeo SG (2013) Aging. Korean J Audiol 17(2):39–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha F, Guerra A, Gonzalez AF (2001) A review of reproductive strategies in cephalopods. Biol Rev 76:291–304

    Article  CAS  PubMed  Google Scholar 

  • Rodhouse PG (1998) Physiological progenesis in cephalopod mollusks. Biol Bull 195:17–20

    Article  CAS  PubMed  Google Scholar 

  • Ropelle ER, Pauli JR, Fernandes MF, Rocco SA, Marin RM, Morari J, Souza KK, Dias MM, Gomes-Marcondes MC, Gontijo JA, Franchini KG, Velloso LA, Saad MJ, Carvalheira JB (2008) A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57(3):594–605

    Article  CAS  PubMed  Google Scholar 

  • Storey JD (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31:2013–2035

    Article  Google Scholar 

  • Teaniniuraitemoana V, Huvet A, Levy P, Klopp C, Lhuillier E, Gaertner-Mazouni N, Gueguen Y, Le Moullac G (2014) Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes. BMC Genom 15(1):491

    Article  CAS  Google Scholar 

  • Tian K, Lou FR, Gao TX, Zhou YD, Miao ZQ, Han ZQ (2018) De novo assembly and annotation of the whole transcriptome of Sepiella maindroni. Mar Genom 38:13–16

    Article  Google Scholar 

  • Wan LY, Su W, Li B, Lei Y, Yan LY, Kang YP, Huan DX, Chen YN, Jiang HF, Liao BS (2018) Molecular analysis of formation of drought tolerance traits in peanut. Chin J Oil Crop Sci 40(3):335–343 (Chinese with English abstract)

    Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–148

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang XM, Ding PW, Liu TY, Chen SQ (2017) Reproductive behavior and mating strategy of Sepia esculenta. Acta Ecol Sin 1000-0933(6):1871–1880 (Chinese with English abstract)

    Google Scholar 

  • Wells MJ, Wells J (1959) Hormonal control of sexual maturity in octopus. J Exp Biol 36:1–33

    Google Scholar 

  • Xu GY, Li Y, An WJ, Li SD, Guan YF, Wang NP, Tang CS, Wang X, Zhu Y, Li XY, Mulholland MW, Zhang WZ (2009) Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 150(8):3637–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin YN, Liu CL, Hu P, Zhang JY, Liu SF, Zhuang ZM, Xue TM (2018) Histology of oogenesis and ovarian development in cultured Sepia esculenta. J Fish Sci China 25(3):503–511 (Chinese with English abstract)

    Google Scholar 

  • Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon, Oxford

    Google Scholar 

  • Zhang X, Mao Y, Huang ZX, Qu M, Chen J, Ding SX, Hong JN, Sun TT (2012) Transcriptome analysis of the Octopus vulgaris central nervous system. PLoS One 7:e40320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Liu CL, He MC, Xiang ZL, Yin YN, Liu SF, Zhuang ZM (2019) A full-length transcriptome of Sepia esculenta using a combination of single-molecule long-read (SMRT) and Illumina sequencing. Mar Genom 43:54–57

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31672645), and the basic scientific research service fee of the Central Scientific Research Institute (20603022016001) and Taishan Scholar Project, Shandong Province (2015-2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufang Liu or ZhiMeng Zhuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., He, M., Xiang, Z. et al. Transcriptome analysis for identifying possible causes of post-reproductive death of Sepia esculenta based on brain tissue. Genes Genom 41, 629–645 (2019). https://doi.org/10.1007/s13258-019-00811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00811-z

Keywords

Navigation