Skip to main content
Log in

A head transcriptome provides insights into odorant binding proteins of the bamboo grasshopper

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The bamboo grasshopper Ceracris kiangsu is a famous bamboo pest in China. The identification of genes involved in olfactory behavior of C. kiangsu is necessary for better understanding the molecular basis and expression profiles of behavior ecology. However, necessary genomic and transcriptomic data are lacking in the species, limiting control efficiency. The primary objective of this study was to find and describe odorant binding proteins in the head of the bamboo grasshopper. We performed the paired-end sequencing on an Illumina Hiseq2000 following the vendor’s recommended protocol. Functional annotation was performed by comparison with public databases. OBP genes were first identified using BLASTN and BLASTX results from our C. kiangsu datebase, which was established from the date of transcriptome sequencing. The gene-specific primers were used to conduct RT-PCR to detect the tissue distribution of OBPs using a SYBR Premix ExTaq kit following the manufacturer’s instructions with a real-time thermal cycler. We obtained more than 133 million clean reads derived from the C. Kiangsu heads using the next-generation sequencing, which were assembled into 260,822 unique sequences (average 814 bp). We have detected eight putative odorant binding protein genes (OBPs) of C. kiangsu for the first time, and analyzed the expression profiles of the OBPs in different tissues (head, antenna, mouthpart, body and leg). Our results reveal that the eight OBPs display a clear divergence, strongly indicating that they possessed diverse functions, and thus provides comprehensive sequence analysis for elucidating the molecular basis of OBPs in C. kiangsu. In addition, we find that the relative expression levels of OBP1, OBP2 and OBP8 are significantly higher in the antennae as compared to the other OBP genes, suggesting that these three OBP genes play crucial roles in the locust’s odorant discrimination. In general, this is the first study to characterize the complete head transcriptome of C. kiangsu using high-throughput sequencing. The study opens a window for functional characterization of the OBPs of C. kiangsu, with potential for new or refined applications of semiochemicals for control of this notorious pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, Castro E et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology, the gene ontology consortium. Nat Genetics 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Badisco L, Jurgen H, Simonet G, Verlinden H, Marchal E, Huybrechts R et al (2011) Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS ONE 6:e17274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ban LP, Scaloni A, Ambrosio CD (2003) Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci 2:390–400

    Article  Google Scholar 

  • Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008: 619832

    Article  PubMed  CAS  Google Scholar 

  • Faircloth BC (2008) Msatcommander detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Res 8:92–94

    Article  CAS  Google Scholar 

  • Gotzek D, Robertson HM, Wurm Y, Shoemaker D (2011) Odorant binding proteins of the red imported fire ant, Solenopsis invicta: An example of the problems facing the analysis of widely divergent proteins. PLoS ONE 6:e16289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci USA 108:7449–7454

    Article  PubMed  Google Scholar 

  • Gu SH, Wang SP, Zhang XY, Wu KM, Guo YY, Zhou JJ, Zhang YJ (2011) Identification and tissue distribution of odorant binding protein genes in the lucerne plant bug Adelphocoris lineolatus (Goeze). Insect Biochem Mol Biol 41:254–263

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Marth G (2008)) EagleView: a genome assembly viewer for next generation sequencing technologies. Genome Res 18:1538–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong YT, Shim J, Oh SR, Yoon HI, Kim CH, Moon SJ, Montell C (2013) An odorant binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:725–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji P, Gu SH, Liu JT, Zhu XQ, Guo YY, Zhou JJ, Zhang YJ (2013) Identification and expression profile analysis of odorant-binding protein genes in Apolygus lucorum (Hemiptera: Miridae). Appl Entomol Zool 48:301–311

    Article  CAS  Google Scholar 

  • Justice RW, Dimitratos S, Walter MF, Woods DF, Biessmann H (2003) Sexual dimorphic expression of putative antennal carrier protein genes in the malaria vector Anopheles gambiae. Insect Mol Biol 12:581–594

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 36:W345–W349

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  PubMed  CAS  Google Scholar 

  • Leal WS, Choo YM, Xu P, da Silva CS, Ueira-Vieira C (2013) Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms. Proc Natl Acad Sci 110:18704–18709

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Lehane S, He X, Lehane M, Hertz-Fowler C, Berriman M et al (2010) Characterisations of odorant-binding proteins in the tsetse fly Glossina morsitans morsitans. Cell Mol Life Sci 67:919–929

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Wei W, Chu Y, Zhang L, Shen J, An C (2014) De novo transcriptome analysis of wing development-related signaling pathways in Locusta migratoria manilensis and Ostrinia furnacalis (Guenée). PLoS ONE 9:e106770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma K, Qiu G, Feng J, Li J (2012) Transcriptome analysis of the oriental river prawn, Macrobrachium nipponense using 454 pyrosequencing for discovery of genes and markers. PLoS ONE 7:e39727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Sakurai T, Nishioka T, Touhara K (2005) Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HBJ, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW NEWS 4:14

    Google Scholar 

  • Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D (2005) Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21:3431–3432

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Leal WS (2009) Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS ONE 4:e6237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 111:503–514

    Article  PubMed  CAS  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  PubMed  CAS  Google Scholar 

  • Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud K (2014) Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 98:61–70

    Article  PubMed  CAS  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  PubMed  CAS  Google Scholar 

  • Shanbhag SR, Muller B, Steinbrecht RA (2000) Atlas of olfactory organs of Drosophila melanogaster : 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct Dev 29:211–229

    Article  PubMed  CAS  Google Scholar 

  • Shen K, Wang HJ, Shao L, Xiao K, Shu JP, Li GQ (2009) Mud-puddling in the yellow-spined bamboo locust, Ceracris kiangsu (Oedipodidae: Orthoptera): does it detect and prefer salts or nitrogenous compounds from human urine? J Insect Physiol 55:78–84

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomioka S, Aigaki T, Matsuo T (2012) Conserved cis-regulatory elements of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila. Genes Genet Syst 87:323–329

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-SEq. Bioinformatics 25:1105–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  PubMed  CAS  Google Scholar 

  • Vogt RG, Callahan FE, Rogers ME, Dickens JC (1999) Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Senses 24:481–495

    Article  PubMed  CAS  Google Scholar 

  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genom 11:400

    Article  CAS  Google Scholar 

  • Wang XH, Fang XD, Yang PC, Guo XJ, Guo W, Wang XS et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu YL, He P, Zhang L, Fang SQ, Dong SL, Zhang YJ, Li F (2009) Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genom 10:632

    Article  CAS  Google Scholar 

  • Zhang S, Pang B, Zhang L (2015) Novel odorant-binding proteins and their expression patterns in grasshopper, Oedaleus asiaticus. Bioche Biophy Res Com 460:274–280

    Article  CAS  Google Scholar 

  • Zhou JJ, Huang W, Zhang G, Pickett A, Field LM (2004) “Plus-C” odorant-binding protein genes JA in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327:117–129

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, He XL, Pickett JA, Field LM (2008) Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: Genome annotation and comparative analyses. Insect Mol Biol 17:147–163

    Article  PubMed  CAS  Google Scholar 

  • Zhou JJ, Vieira FG, He XL, Smadja C, Liu R, Rozas J, Field LM (2010) Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 19:113–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Sciences Foundation of China (Nos. 30970339 and 31572246), and funding from the Jiangsu Higher Education Institution’s Priority Academic Program Development program to Guofang Jiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Fang Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Jiang, GF. & Dong, SY. A head transcriptome provides insights into odorant binding proteins of the bamboo grasshopper. Genes Genom 40, 991–1000 (2018). https://doi.org/10.1007/s13258-018-0706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0706-0

Keywords

Navigation