Skip to main content
Log in

A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Rheumatic heart disease is a major cause of mitral valve (MV) dysfunction, particularly in disadvantaged areas and developing countries. There lacks a critical understanding of the disease biomechanics, and as such, the purpose of this study was to generate the first ex vivo porcine model of rheumatic MV disease by simulating the human pathophysiology and hemodynamics.

Methods

Healthy porcine valves were altered with heat treatment, commissural suturing, and cyanoacrylate tissue coating, all of which approximate the pathology of leaflet stiffening and thickening as well as commissural fusion. Hemodynamic data, echocardiography, and high-speed videography were collected in a paired manner for control and model valves (n = 4) in an ex vivo left heart simulator. Valve leaflets were characterized in an Instron tensile testing machine to understand the mechanical changes of the model (n = 18).

Results

The model showed significant differences indicative of rheumatic disease: increased regurgitant fractions (p < 0.001), reduced effective orifice areas (p < 0.001), augmented transmitral mean gradients (p < 0.001), and increased leaflet stiffness (p = 0.025).

Conclusion

This work represents the creation of the first ex vivo model of rheumatic MV disease, bearing close similarity to the human pathophysiology and hemodynamics, and it will be used to extensively study both established and new treatment techniques, benefitting the millions of affected victims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Video 1
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

All data is made available in this manuscript.

Code Availability

Not required.

Abbreviations

RHD:

Rheumatic heart disease

MV:

Mitral valve

3D:

Three-dimensional

References

  1. Agozzino, L., A. Falco, F. de Vivo, C. de Vincentiis, L. de Luca, S. Esposito, et al. Surgical pathology of the mitral valve: gross and histological study of 1288 surgically excised valves. Int. J. Cardiol. 37:79–89, 1992. https://doi.org/10.1016/0167-5273(92)90135-p.

    Article  CAS  PubMed  Google Scholar 

  2. Al-Atassi, T., H. D. Toeg, R. Jafar, B. Sohmer, M. Labrosse, and M. Boodhwani. Impact of aortic annular geometry on aortic valve insufficiency: insights from a preclinical, ex vivo, porcine model. J. Thorac. Cardiovasc. Surg. 150:656–664, 2015. https://doi.org/10.1016/j.jtcvs.2015.06.060.

    Article  PubMed  Google Scholar 

  3. Antunes, M. J. Repair of the rheumatic mitral valve: is the controversy over? Asian Cardiovasc. Thorac. Ann. 28:374–376, 2020. https://doi.org/10.1177/0218492320927316.

    Article  PubMed  Google Scholar 

  4. Banerjee, T., S. Mukherjee, S. Ghosh, M. Biswas, S. Dutta, S. Pattari, et al. Clinical significance of markers of collagen metabolism in rheumatic mitral valve disease. PLoS ONE. 9:e90527, 2014. https://doi.org/10.1371/journal.pone.0090527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barber, J. E., F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, and I. Vesely. Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg. 122:955–962, 2001. https://doi.org/10.1067/mtc.2001.117621.

    Article  CAS  PubMed  Google Scholar 

  6. Bennett, J., J. Zhang, W. Leung, S. Jack, J. Oliver, R. Webb, et al. Rising ethnic inequalities in acute rheumatic fever and rheumatic heart disease, New Zealand, 2000–2018. Emerg. Infect. Dis. 27:191791, 2021. https://doi.org/10.3201/eid2701.191791.

    Article  CAS  Google Scholar 

  7. Carapetis, J. R., A. C. Steer, E. K. Mulholland, and M. Weber. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5:685–694, 2005. https://doi.org/10.1016/S1473-3099(05)70267-X.

    Article  PubMed  Google Scholar 

  8. Chauvaud, S., J. F. Fuzellier, A. Berrebi, A. Deloche, J. N. Fabiani, and A. Carpentier. Long-term (29 years) results of reconstructive surgery in rheumatic mitral valve insufficiency. Circulation. 104:I12–I15, 2001. https://doi.org/10.1161/hc37t1.094707.

    Article  CAS  PubMed  Google Scholar 

  9. Cheunsuchon, P., T. Chuangsuwanich, N. Samanthai, M. Warnnissorn, P. Leksrisakul, and P. Thongcharoen. Surgical pathology and etiology of 278 surgically removed mitral valves with pure regurgitation in Thailand. Cardiovasc. Pathol. 16:104–110, 2007. https://doi.org/10.1016/j.carpath.2006.08.005.

    Article  PubMed  Google Scholar 

  10. Coffey, S., R. Roberts-Thomson, A. Brown, J. Carapetis, M. Chen, M. Enriquez-Sarano, et al. Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 2021. https://doi.org/10.1038/s41569-021-00570-z.

    Article  PubMed  Google Scholar 

  11. Essop, M. R., and V. T. Nkomo. Rheumatic and nonrheumatic valvular heart disease: epidemiology, management, and prevention in Africa. Circulation. 112:3584–3591, 2005. https://doi.org/10.1161/CIRCULATIONAHA.105.539775.

    Article  PubMed  Google Scholar 

  12. Folger, G. M., R. Hajar, A. Robida, and H. A. Hajar. Occurrence of valvar heart disease in acute rheumatic fever without evident carditis: colour-flow Doppler identification. Br. Heart J. 67:434–438, 1992. https://doi.org/10.1136/hrt.67.6.434.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fu, G., Z. Zhou, S. Huang, G. Chen, M. Liang, L. Huang, et al. Mitral valve surgery in patients with rheumatic heart disease: repair vs. replacement. Front. Cardiovasc. Med. 8:685746, 2021. https://doi.org/10.3389/fcvm.2021.685746.

    Article  PubMed  PubMed Central  Google Scholar 

  14. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 392:1789–1858, 2018. https://doi.org/10.1016/S0140-6736(18)32279-7.

    Article  Google Scholar 

  15. Imbrie-Moore, A. M., M. H. Park, M. J. Paulsen, M. Sellke, R. Kulkami, H. Wang, et al. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J. R. Soc. Interface. 17:20200614, 2020. https://doi.org/10.1098/rsif.2020.0614.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Imbrie-Moore, A. M., C. C. Paullin, M. J. Paulsen, F. Grady, H. Wang, C. E. Hironaka, et al. A novel 3D-Printed preferential posterior mitral annular dilation device delineates regurgitation onset threshold in an ex vivo heart simulator. Med. Eng. Phys. 77:10–18, 2020. https://doi.org/10.1016/j.medengphy.2020.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imbrie-Moore, A. M., M. J. Paulsen, A. D. Thakore, H. Wang, C. E. Hironaka, H. J. Lucian, et al. Ex vivo biomechanical study of apical versus papillary neochord anchoring for mitral regurgitation. Ann. Thorac. Surg. 108:90–97, 2019. https://doi.org/10.1016/j.athoracsur.2019.01.053.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Imbrie-Moore, A. M., M. J. Paulsen, Y. Zhu, H. Wang, H. J. Lucian, J. M. Farry, et al. A novel cross-species model of Barlow’s disease to biomechanically analyze repair techniques in an ex vivo left heart simulator. J. Thorac. Cardiovasc. Surg. 161:1776–1783, 2021. https://doi.org/10.1016/j.jtcvs.2020.01.086.

    Article  PubMed  Google Scholar 

  19. International Standard. ISO 5840–1:2015 (E): Cardiovascular Implants: Cardiac Valve Prostheses. Geneva: ISO Copyright Office, 2015.

    Google Scholar 

  20. Jaine, R., M. Baker, and K. Venugopal. Acute rheumatic fever associated with household crowding in a developed country. Pediatr. Infect. Dis J. 30:315–319, 2011. https://doi.org/10.1097/INF.0b013e3181fbd85b.

    Article  PubMed  Google Scholar 

  21. Jiao, Y., T. Luo, H. Zhang, J. Han, Y. Li, Y. Jia, et al. Repair versus replacement of mitral valves in cases of severe rheumatic mitral stenosis: mid-term clinical outcomes. J. Thorac. Dis. 11:3951–3961, 2019. https://doi.org/10.21037/jtd.2019.08.101.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kabukçu, M., E. Arslantas, I. Ates, F. Demircioglu, and F. Ersel. Clinical, echocardiographic, and hemodynamic characteristics of rheumatic mitral valve stenosis and atrial fibrillation. Angiology. 56:159–163, 2005. https://doi.org/10.1177/000331970505600206.

    Article  PubMed  Google Scholar 

  23. Kheradvar, A., E. M. Groves, C. A. Simmons, B. Griffith, S. H. Alavi, R. Tranquillo, et al. Emerging trends in heart valve engineering: Part III. Novel technologies for mitral valve repair and replacement. Ann. Biomed. Eng. 43:858–870, 2015. https://doi.org/10.1007/s10439-014-1129-y.

    Article  PubMed  Google Scholar 

  24. Kumar, R. K., M. J. Antunes, A. Beaton, M. Mirabel, V. T. Nkomo, E. Okello, et al. Contemporary diagnosis and management of rheumatic heart disease: implications for closing the gap: a scientific statement from the american heart association. Circulation. 142:e337–e357, 2020. https://doi.org/10.1161/CIR.0000000000000921.

    Article  PubMed  Google Scholar 

  25. Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992. https://doi.org/10.1111/j.1540-8191.1992.tb00777.x.

    Article  CAS  PubMed  Google Scholar 

  26. Lally, C., A. J. Reid, and P. J. Prendergast. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32:1355–1364, 2004. https://doi.org/10.1114/b:abme.0000042224.23927.ce.

    Article  CAS  PubMed  Google Scholar 

  27. Laudari, S., and G. Subramanyam. A study of spectrum of rheumatic heart disease in a tertiary care hospital in Central Nepal. Int. J. Cardiol. Heart Vasc. 15:26–30, 2017. https://doi.org/10.1016/j.ijcha.2017.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim, K. O., and D. R. Boughner. Mechanical properties of human mitral valve chordae tendineae: variation with size and strain rate. Can. J. Physiol. Pharmacol. 53:330–339, 1975. https://doi.org/10.1139/y75-048.

    Article  CAS  PubMed  Google Scholar 

  29. Lis, Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg, and M. J. Davies. Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem. J. 244:597–603, 1987. https://doi.org/10.1042/bj2440597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, M., L. Lu, R. Sun, Y. Zheng, and P. Zhang. Rheumatic heart disease: causes, symptoms, and treatments. Cell Biochem. Biophys. 72:861–863, 2015. https://doi.org/10.1007/s12013-015-0552-5.

    Article  CAS  PubMed  Google Scholar 

  31. Lorusso, R., M. De Bonis, G. De Cicco, F. Maisano, C. Fucci, and O. Alfieri. Mitral insufficiency and its different aetiologies: old and new insights for appropriate surgical indications and treatment. J. Cardiovasc. Med. 8:108–113, 2007. https://doi.org/10.2459/01.JCM.0000260211.02468.0a.

    Article  Google Scholar 

  32. Marijon, E., P. Ou, D. S. Celermajer, B. Ferreira, A. O. Mocumbi, D. Jani, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N. Engl. J. Med. 357:470–476, 2007. https://doi.org/10.1056/NEJMoa065085.

    Article  CAS  PubMed  Google Scholar 

  33. Park, M. H., Y. Zhu, A. M. Imbrie-Moore, H. Wang, M. Marin-Cuartas, M. J. Paulsen, et al. Heart valve biomechanics: the frontiers of modeling modalities and the expansive capabilities of ex vivo heart simulation. Front. Cardiovasc. Med. 8:673689, 2021. https://doi.org/10.3389/fcvm.2021.673689.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Passos, L. S. A., M. C. P. Nunes, and E. Aikawa. Rheumatic heart valve disease pathophysiology and underlying mechanisms. Front. Cardiovasc. Med. 7:612716, 2020. https://doi.org/10.3389/fcvm.2020.612716.

    Article  CAS  PubMed  Google Scholar 

  35. Paulsen, M. J., A. M. Imbrie-Moore, H. Wang, J. H. Bae, C. E. Hironaka, J. M. Farry, et al. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator. Eur. J. Cardiothorac. Surg. 57:535–544, 2020. https://doi.org/10.1093/ejcts/ezz258.

    Article  PubMed  Google Scholar 

  36. De Santo, L. S., G. Romano, A. Della Corte, F. Tizzano, A. Petraio, C. Amarelli, et al. Mitral mechanical replacement in young rheumatic women: analysis of long-term survival, valve-related complications, and pregnancy outcomes over a 3707-patient-year follow-up. J. Thorac. Cardiovasc. Surg. 130:13–19, 2005. https://doi.org/10.1016/j.jtcvs.2004.11.032.

    Article  PubMed  Google Scholar 

  37. Seckeler, M. D., and T. R. Hoke. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin. Epidemiol. 3:67–84, 2011. https://doi.org/10.2147/CLEP.S12977.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Siefert, A. W., J.-P.M. Rabbah, E. L. Pierce, K. S. Kunzelman, and A. P. Yoganathan. Quantitative evaluation of annuloplasty on mitral valve chordae tendineae forces to supplement surgical planning model development. Cardiovasc. Eng. Technol. 5:35–43, 2014. https://doi.org/10.1007/s13239-014-0175-9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sliwa, K., M. Carrington, B. M. Mayosi, E. Zigiriadis, R. Mvungi, and S. Stewart. Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the heart of Soweto study. Eur. Heart J. 31:719–727, 2010. https://doi.org/10.1093/eurheartj/ehp530.

    Article  PubMed  Google Scholar 

  40. Uricchio, J. F., L. Bentivoglio, J. Dickens, and H. Goldberg. The value of left heart catheterization in patients with rheumatic mitral valve disease. Dis. Chest. 34:525–536, 1958. https://doi.org/10.1378/chest.34.5.525.

    Article  CAS  PubMed  Google Scholar 

  41. Vasan, R. S., S. Shrivastava, M. Vijayakumar, R. Narang, B. C. Lister, and J. Narula. Echocardiographic evaluation of patients with acute rheumatic fever and rheumatic carditis. Circulation. 94:73–82, 1996. https://doi.org/10.1161/01.cir.94.1.73.

    Article  CAS  PubMed  Google Scholar 

  42. Veasy, L. G., L. Y. Tani, and H. R. Hill. Persistence of acute rheumatic fever in the intermountain area of the United States. J. Pediatr. 124:9–16, 1994. https://doi.org/10.1016/s0022-3476(94)70247-0.

    Article  CAS  PubMed  Google Scholar 

  43. Watkins, D. A., A. Z. Beaton, J. R. Carapetis, G. Karthikeyan, B. M. Mayosi, R. Wyber, et al. Rheumatic heart disease worldwide: JACC scientific expert panel. J. Am. Coll. Cardiol. 72:1397–1416, 2018. https://doi.org/10.1016/j.jacc.2018.06.063.

    Article  PubMed  Google Scholar 

  44. Watkins, D. A., C. O. Johnson, S. M. Colquhoun, G. Karthikeyan, A. Beaton, G. Bukhman, et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N. Engl. J. Med. 377:713–722, 2017. https://doi.org/10.1056/NEJMoa1603693.

    Article  PubMed  Google Scholar 

  45. Zakkar, M., E. Amirak, K. M. J. Chan, and P. P. Punjabi. Rheumatic mitral valve disease: current surgical status. Prog. Cardiovasc. Dis. 51:478–481, 2009. https://doi.org/10.1016/j.pcad.2008.08.008.

    Article  PubMed  Google Scholar 

  46. Zhu, Y., A. M. Imbrie-Moore, M. J. Paulsen, B. Priromprintr, M. H. Park, H. Wang, et al. A novel aortic regurgitation model from cusp prolapse with hemodynamic validation using an ex vivo left heart simulator. J. Cardiovasc. Transl. Res. 2020. https://doi.org/10.1007/s12265-020-10038-z.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhu, Y., A. M. Imbrie-Moore, M. J. Paulsen, B. Priromprintr, H. Wang, H. J. Lucian, et al. Novel bicuspid aortic valve model with aortic regurgitation for hemodynamic status analysis using an ex vivo simulator. J. Thorac. Cardiovasc. Surg. 2020. https://doi.org/10.1016/j.jtcvs.2020.06.028.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zühlke, L. J., and A. C. Steer. Estimates of the global burden of rheumatic heart disease. Glob. Heart. 8:189–195, 2013. https://doi.org/10.1016/j.gheart.2013.08.008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH R01 HL152155-03, YJW), the National Science Foundation Graduate Research Fellowship Program (DGE-1656518, AMI), the Stanford Graduate Fellowship (AMI), and the Thoracic Surgery Foundation Resident Research Fellowship (YZ). We would also like to thank the generous donation by Donald and Sally O’Neal to support this research effort.

Funding

This work was supported by the National Institutes of Health (NIH R01 HL152155-03 YJW), the National Science Foundation Graduate Research Fellowship Program (DGE-1656518, AMI), the Stanford Graduate Fellowship (AMI), and the Thoracic Surgery Foundation Resident Research Fellowship (YZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Joseph Woo.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical Approval

Not required.

Consent to Participate

Not required.

Consent for Publication

All authors consent to publication of this manuscript.

Additional information

Associate Editor Pedro del Nido oversaw the review of this article.

Associate Editor Pedro del Nido, M.D. oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 36706 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M.H., Pandya, P.K., Zhu, Y. et al. A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation. Cardiovasc Eng Tech 14, 129–140 (2023). https://doi.org/10.1007/s13239-022-00641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00641-3

Keywords

Navigation