Skip to main content
Log in

Non-Invasive Quantification of Ventricular Contractility, Arterial Elastic Function and Ventriculo-Arterial Coupling from a Single Diagnostic Encounter Using Simultaneous Arterial Tonometry and Magnetic Resonance Imaging

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Optimal assessment of cardiovascular performance requires simultaneous measurement of load independent left ventricular (LV) contractility, arterial function and LV/arterial coupling. We aimed to demonstrate feasibility of non-invasive ventricular pressure–volume and aortic pressure-flow-impedance measurements using simultaneous arterial tonometry (AT) and cardiovascular magnetic resonance imaging (CMRI).

Methods

21 consecutive patients referred for CMRI were enrolled to undergo a simultaneous AT and CMRI protocol. A CMRI compatible AT apparatus provided aortic end-systolic pressure, taken to be equivalent to LV end-systolic pressure in the absence of aortic stenosis. CMRI provided LV volume and aortic flow at the time of pressure acquisition. Pressure–volume relationships were determined and correlated to traditional parameters of LV function including ejection fraction and circumferential strain. Aortic pressure-flow relationships were used to determine aortic characteristic impedance and systemic vascular resistance.

Results

Simultaneous AT and CMRI permitted measurement of LV end-systolic elastance, preload recruitable stroke work, arterial elastance, aortic characteristic impedance and systemic vascular resistance. Absolute values were within the expected range for our cohort, were highly reproducible and showed appropriately directed correlation to traditional parameters.

Conclusion

Non-invasive assessment of LV pressure–volume and aortic pressure-flow relationships are both feasible and reproducible using simultaneous AT and CMRI. Methods permit assessment of load independent LV contractility, arterial function and LV/arterial coupling from a single non-invasive diagnostic encounter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adji, A., K. Hirata, and M. F. O’Rourke. Clinical uses of indices determined non-invasively from the radial and carotid pressure waveforms. Blood Press Monit. 11:215–221, 2006.

    Article  Google Scholar 

  2. Adji, A., N. Kachenoura, E. Bollache, A. P. Avolio, M. F. O’Rourke, and E. Mousseaux. Magnetic resonance and applanation tonometry for noninvasive determination of left ventricular load and ventricular vascular coupling in the time and frequency domain. J. Hypertens. 34:1099–1108, 2016.

    Article  Google Scholar 

  3. Adji, A., and M. F. O’Rourke. Can aortic wave reflecting site be estimated from the early systolic shoulder? Circulation 126(Suppl.):A17711, 2012.

    Google Scholar 

  4. Aurigemma, G. P., W. H. Gaasch, B. J. Villegas, and T. E. Meyer. Noninvasive assessment of left ventricular mass, chamber volume and contractile function. Curr. Probl. Cardiol. 20:364–440, 1995.

    Article  Google Scholar 

  5. Bargiotas, I., E. Bollache, E. Mousseaux, A. Giron, A. De Cesare, A. Redheuil, et al. MR and applanation tonometry derived aortic impedance: association with aging and LV remodeling. J. Magn. Reson. Imaging 41:781–787, 2015.

    Article  Google Scholar 

  6. Beck, D. T., J. S. Martin, W. W. Nichols, A. N. Gurovich, and R. W. Braith. Validity of a novel wristband tonometer for measuring central hemodynamics and augmentation index. Am. J. Hypertens. 27:926–931, 2014.

    Article  Google Scholar 

  7. Benetos, A., F. Thomas, L. Joly, J. Blacher, B. Pannier, C. Labat, et al. Pulse pressure amplification: a mechanical biomarker of cardiovascular risk. J. Am. Coll. Cardiol. 55:1032–1037, 2010.

    Article  Google Scholar 

  8. Bock, J., A. Frydrychowicz, R. Lorenz, D. Hirtler, A. J. Barker, K. M. Johnson, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn. Reson. Med. 66:1079–1088, 2011.

    Article  Google Scholar 

  9. Bollache, E., N. Kachenoura, I. Bargiotas, A. Giron, A. De Cesare, M. Bensalah, et al. How to estimate aortic characteristic impedance from magnetic resonance and applanation tonometry. J. Hypertens. 33:575–582, 2015.

    Article  Google Scholar 

  10. Bouauo, K., I. Bargiotas, D. Craiem, G. Soulat, T. Dietenbeck, S. Houriez-Gombaud-Saintonge, et al. Relative aortic blood pressure using 4D flow MRI: associations with age and aortic tapering. Comput Cardiol 44:1–4, 2017. https://doi.org/10.22489/CinC.2017.080-180.

    Article  Google Scholar 

  11. Bouauo, K., I. Bargiotas, T. Dietenbeck, E. Bollache, G. Soulat, D. Craiem, et al. Analysis of aortic pressure fields from 4D flow MRI in healthy volunteers: associations with age and left ventricular remodeling. J. Magn. Reson. Imaging 50:982–993, 2019.

    Article  Google Scholar 

  12. Chen, C. H., B. Fetics, E. Nevo, C. Rochitte, K. R. Chiou, P. Y. A. Ding, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 38:2028–2034, 2001.

    Article  Google Scholar 

  13. Chen, C. H., E. Nevo, B. Fetics, P. H. Pak, F. C. Yin, W. L. Maughan, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 95:1827–1836, 1997.

    Article  Google Scholar 

  14. Childs, H., L. Ma, M. Ma, J. Clarke, M. Cocker, J. Green, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex vivo validation. J. Cardiovasc. Magn. Reson. 13:40, 2011.

    Article  Google Scholar 

  15. Chirinos, J. A. Ventriculo-arterial coupling: invasive and non-invasive assessment. Artery Res. 7:1–24, 2013.

    Article  Google Scholar 

  16. Donal, E., C. Bergerot, H. Thibault, L. Ernande, J. Loufoua, L. Augeul, et al. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur J Echocardiograph. 10:914–921, 2009.

    Article  Google Scholar 

  17. Fredholm, M., K. Jorgensen, E. Houltz, and S. E. Ricksten. Load-dependence of myocardial deformation variables: a clinical strain-echocardiographic study. Acta Anaesthesiol. Scand. 61:1155–1165, 2017.

    Article  Google Scholar 

  18. Gaemperli, O., P. Biaggi, R. Gugelmann, M. Osranek, J. J. Schreuder, I. Buhler, et al. Real-time left ventricular pressure–volume loops during percutaneous mitral valve repair with the MitraClip system. Circulation 127:1018–1027, 2013.

    Article  Google Scholar 

  19. Gayat, E., V. Mor-Avi, L. Weinert, C. Yodwut, and R. M. Lang. Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol 301:H1916–H1923, 2011.

    Article  Google Scholar 

  20. Glower, D. D., J. A. Spratt, N. D. Snow, J. S. Kabas, J. W. Davis, C. O. Olsen, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009, 1985.

    Article  Google Scholar 

  21. Guarracino, F., R. Baldassarri, and M. R. Pinsky. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 17:213–219, 2013.

    Article  Google Scholar 

  22. Hayashi, K., K. Shigemi, T. Shishido, M. Sugimachi, and K. Sunagawa. Single-beat estimation of ventricular end-systolic elastance–effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92:1769–1776, 2000.

    Article  Google Scholar 

  23. Kappus, R. M., S. M. Ranadive, H. Yan, A. D. Lane, M. D. Cook, et al. Value of predicting left ventricular end systolic pressure changes following an acute bout of exercise. J Sci Med Sport 16:71–75, 2013.

    Article  Google Scholar 

  24. Karunanithi, M. K., and M. P. Feneley. Single-beat determination of preload recruitable stroke work relationship: derivation and evaluation in conscious dogs. J. Am. Coll. Cardiol. 35:502–513, 2000.

    Article  Google Scholar 

  25. Kass, D. A., M. Midei, W. Graves, J. A. Brinker, and W. L. Maughan. Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure–volume relationships in man. Cathet. Cardiovasc. Diagn. 15:192–202, 1988.

    Article  Google Scholar 

  26. Kelly, R., C. Hayward, A. Avolio, and M. O’Rourke. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80:1652–1659, 1989.

    Article  Google Scholar 

  27. Kelly, R., C. Hayward, J. Ganis, J. E. Daley, A. P. Avolio, and M. F. O’Rourke. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol. 1:142–149, 1989.

    Google Scholar 

  28. Kelly, R. P., C. T. Ting, T. M. Yang, C. P. Liu, W. L. Maughan, M. S. Chang, et al. Effective arterial elastance as index of vascular load in humans. Circulation 86:513–521, 1992.

    Article  Google Scholar 

  29. Khalife, M., A. Decoene, F. Caetano, L. de Rochefort, E. Durand, and D. Rodriguez. Estimating absolute aortic pressure using MRI and a one-dimensional model. J. Biomech. 47:3390–3399, 2014.

    Article  Google Scholar 

  30. Konstam, M. A., and F. M. Abboud. Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation 135:717–719, 2017.

    Article  Google Scholar 

  31. Ky, B., B. French, A. May Khan, T. Plappert, A. Wang, J. A. Chirinos, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J. Am. Coll. Cardiol. 62:1165–1172, 2013.

    Article  Google Scholar 

  32. McEniery, C. M., J. R. Cockroft, M. J. Roman, S. S. Franklin, and I. B. Wilkinson. Central blood pressure: current evidence and clinical importance. Eur. Heart J. 35:1719–1725, 2014.

    Article  Google Scholar 

  33. McKay, R. G., J. M. Aroesty, G. V. Heller, H. Royal, J. A. Parker, K. J. Silverman, et al. Left ventricular pressure–volume diagrams and end-systolic pressure–volume relations in human beings. J. Am. Coll. Cardiol. 3:301–312, 1984.

    Article  Google Scholar 

  34. Milnor, W. R. Arterial impedance as ventricular afterload. Circ. Res. 36:565–570, 1975.

    Article  Google Scholar 

  35. Mor-Avi, V., L. Sugeng, and R. M. Lang. Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation 119:314–329, 2009.

    Article  Google Scholar 

  36. Morton, G., A. Schuster, R. Jogiya, S. Kutty, P. Beerbaum, and E. Nagel. Inter-study reproducibility of cardiovascular resonance myocardial feature tracking. J. Cardiovasc. Magn. Reson. 14:43, 2012.

    Article  Google Scholar 

  37. Murgo, J. P., N. Westerhof, J. P. Giolma, and S. A. Altobelli. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116, 1980.

    Article  Google Scholar 

  38. Namasivayam, M., M. P. Feneley, C. S. Hayward, M. Shaw, S. Rao, P. Jansz, et al. First evaluation of acute left ventricular response to off-pump transcatheter mitral valve replacement in high-risk patients. JACC Cardiovasc Interv. 11:2239–2240, 2018.

    Article  Google Scholar 

  39. Narayan, H. K., B. French, A. M. Khan, T. Plappert, D. Hymam, A. Bajulaiye, et al. Noninvasive measures of ventricular-arterial coupling and circumferential strain predict cancer therapeutics-related cardiac dysfunction. J Am Coll Cardiol Img. 9:1131–1141, 2016.

    Article  Google Scholar 

  40. Nayak, K. S., J. Nielsen, M. A. Bernstein, M. Markl, P. D. Gatehouse, R. M. Botnar, et al. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 17:71, 2015.

    Article  Google Scholar 

  41. Nichols, W. W., C. R. Conti, W. E. Walker, and W. R. Milnor. Input impedance of the systemic circulation in man. Circ. Res. 40:451–458, 1977.

    Article  Google Scholar 

  42. Nichols, W. W., M. F. O’Rourke, A. P. Avolio, T. Yaginuma, J. P. Murgo, C. J. Pepine, et al. Effects of age on ventricular vascular coupling. Am. J. Cardiol. 55:1179–1184, 1985.

    Article  Google Scholar 

  43. Nichols, W. W., M. F. O’Rourke, and C. Vlachopoulos. McDonald’s Blood Flow in Arteries (6th ed.). London: Arnold Hodder, 2011.

    Google Scholar 

  44. O’Regan, D. P. Stiff arteries, stiff ventricles: correlation or causality in heart failure? Circ. Cardiovasc. Imaging 9:e005150, 2016.

    Article  Google Scholar 

  45. O’Rourke, M. F. Vascular impedance in studies of arterial and cardiac function. Physiol. Rev. 62:570–623, 1982.

    Article  Google Scholar 

  46. O’Rourke, M. F. Carotid artery tonometry: pros and cons. Am. J. Hypertens. 29:296–298, 2016.

    Article  Google Scholar 

  47. O’Rourke, M. F., and J. Hashimoto. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50:1–13, 2007.

    Article  Google Scholar 

  48. O’Rourke, M. F., and M. E. Safar. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 45:652–658, 2005.

    Article  Google Scholar 

  49. O’Rourke, M. F., and M. G. Taylor. Input impedance of the systemic circulation. Circ. Res. 20:365–380, 1967.

    Article  Google Scholar 

  50. Ohyama, Y., B. Ambale-Venkatesh, C. Noda, A. R. Chugh, G. Teixido-Tura, J. Kim, et al. Association of aortic stiffness with left ventricular remodeling and reduced left ventricular function measured by magnetic resonance imaging: the Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Imaging 9:e004426, 2016.

    Article  Google Scholar 

  51. Papaioannou, T. G., A. D. Protogerou, and C. Stefanidis. What to expect from pulse pressure amplification. J. Am. Coll. Cardiol. 55:1038–1040, 2010.

    Article  Google Scholar 

  52. Patel, D. J., J. C. Greenfield, Jr, W. G. Austen, A. G. Morrow, and D. L. Fry. Pressure-flow relationships in the ascending aorta and femoral artery of man. J. Appl. Physiol. 20:459–463, 1965.

    Article  Google Scholar 

  53. Patel, D. J., D. J. Mason, J. Ross, and E. Braunwald. Harmonic analysis of pressure pulses obtained from the heart and great vessels of man. Am. Heart J. 69:785–794, 1965.

    Article  Google Scholar 

  54. Pauca, A. L., M. F. O’Rourke, and N. D. Kon. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38:932–937, 2001.

    Article  Google Scholar 

  55. Phan, T. S., K. Li, P. Segers, M. Reddy-Koppua, A. R. Akers, S. T. Kuna, et al. Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites. J Am Heart Assoc. 5:e003733, 2016.

    Google Scholar 

  56. Riesenkampff, E., J. F. Fernandes, S. Meier, L. Goubergrits, S. Kropf, S. Schubert, et al. Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. J Am Coll Cardiol Img 7:920–926, 2014.

    Article  Google Scholar 

  57. Roman, M. J., and R. B. Devereux. Association of central and peripheral blood pressures with intermediate cardiovascular phenotypes. Hypertension 63:1148–1153, 2014.

    Article  Google Scholar 

  58. Schuster, A., V. C. Stahnke, C. Unterwald-Buchwald, J. T. Kowallick, P. Lamata, et al. Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin. Radiol. 70:989–998, 2015.

    Article  Google Scholar 

  59. Sharman, J. E., R. Lim, A. M. Qasem, J. S. Coombes, M. I. Burgess, J. Franco, et al. Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension 47:1203–1208, 2006.

    Article  Google Scholar 

  60. Soderstrom, S., G. Nyberg, M. F. O’Rourke, J. Sellgren, and J. Ponten. Can a clinically useful aortic pressure wave be derived from a radial pressure wave? Br. J. Anaesth. 88:481–488, 2002.

    Article  Google Scholar 

  61. Stone, J., D. Johnstone, J. Mitrofanis, and M. F. O’Rourke. The mechanical cause of age-related dementia: the brain is destroyed by the pulse. J Alzheimers Dis. 44:355–373, 2015.

    Article  Google Scholar 

  62. Townsend, R. R., I. B. Wilkinson, E. L. Schiffrin, A. P. Avolio, J. A. Chirinos, J. R. Cockroft, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a statement from the American Heart Association. Hypertension 66:698–722, 2015.

    Article  Google Scholar 

  63. Tyszka, J. M., D. H. Laidlaw, J. W. Asa, and J. M. Silverman. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J. Magn. Reson. Imaging 12:321–329, 2000.

    Article  Google Scholar 

  64. van Fossen, D., M. E. Fontana, D. V. Unverferth, S. Walker, A. J. Kolibash, and T. M. Bashore. Safety and efficacy of inferior vena caval occlusion to rapidly alter ventricular loading conditions in idiopathic dilated cardiomyopathy. Am. J. Cardiol. 59:937–942, 1987.

    Article  Google Scholar 

  65. Zamani, P., S. Akers, H. Soto-Calderon, M. Beraun, M. R. Koppula, S. Varakantam, et al. Isosorbide dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 6:e004262, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Kirsten Moffat and the MRI radiography team, St. Vincent’s Hospital, Sydney, for their assistance with CMRI data acquisition. The authors also thank Dr. Mark Butlin and colleagues from Macquarie University for the use of the MRI compatible arterial tonometer.

Funding

This work was supported by a St. Vincent’s Clinic Foundation Research Grant. Dr. Mayooran Namasivayam is supported by an Australian Government Research Training Program Scholarship and received the Cardiac Society of Australia and New Zealand Travelling Fellowship Award for presentation of the preliminary results of this work at the 2018 American College of Cardiology Annual Scientific Sessions, Orlando, FL, USA.

Disclosures

Dr. Michael F. O’Rourke is a founding director of AortaMate and AtCor Medical, companies formed to aid measurement of central aortic pressure, development of software for pulse wave analyses and methods to reduce aortic stiffness. The other authors report no conflicts of interest.

Ethical Approval

All procedures performed in studies were in accordance with the ethical standards of the St Vincent’s Hospital Research Ethics Committee and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Written informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayooran Namasivayam.

Additional information

Associate Editor Mark Fogel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13239_2020_462_MOESM1_ESM.pdf

Supplemental Digital Content 1, Figure: Changes in aortic pulse pressure (panel A), pulse wave velocity (panel B), augmentation index (panel C), characteristic impedance (panel D) and systemic vascular resistance with age (panel E). p and r values as follows: age vs aortic pulse pressure p = 0.003 r = 0.618; age vs pulse wave velocity p = 0.305 r = 0.248; age vs augmentation index p < 0.0001 r = 0.843; age vs characteristic impedance p = 0.055 r = 0.425; age vs systemic vascular resistance p = 0.169 r = 0.312. Supplementary material 1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namasivayam, M., Adji, A., Lin, L. et al. Non-Invasive Quantification of Ventricular Contractility, Arterial Elastic Function and Ventriculo-Arterial Coupling from a Single Diagnostic Encounter Using Simultaneous Arterial Tonometry and Magnetic Resonance Imaging. Cardiovasc Eng Tech 11, 283–294 (2020). https://doi.org/10.1007/s13239-020-00462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00462-2

Keywords

Navigation