Skip to main content

Advertisement

Log in

Cardiac Output Monitoring in Children, Adolescents and Adults Based on Pulse Contour Analysis: Comparison with Echocardiography-Derived Data and Identification of Factors Associated with Their Differences

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Through pulse contour analysis (PCA) devices would enable to obtain non-invasive operator-independent cardiac output (CO) measurements [CO(PCA)]. The agreement between CO(PCA) and data from two-dimensional [CO(2D)] or Doppler [CO(VTI)] echocardiography (references) remains controversial.

Aims

To analyze: (1) CO(PCA), CO(2D) and CO(VTI) agreement, (2) determinants of methods’ differences in measured CO values.

Methods

Simultaneous echocardiography and PCA records (Mobil-O-Graph/Germany) were obtained in 130 subjects (age: 29 ± 17 years). Hemodynamic (e.g., heart rate [HR]), arterial (e.g., arterial stiffness, augmentation index [AIx]) and cardiac structural–functional (e.g., left ventricle end-diastolic diameters [LVEDD]) parameters were obtained. Data from the entire group (all; 10–85 years), children (≤ 16 years), adolescents (17–24 years) and adults (> 24 years) were separately analyzed.

Results

The highest Lin’s concordance correlation coefficient (CCC) were obtained when analyzing CO(PCA)/CO(2D) association (0.672, 0.785, 0.721, 0.487 for all, children, adolescents and adults, respectively); CCC levels were higher at younger ages. Bland–Altman’s systematic errors between CO(PCA)/CO(2D) were 0.12, 0.17, 0.07 and 0.14 L/min, for all, children, adolescents and adults, respectively (non-significant). CO(VTI)/CO(PCA) systematic error only reached significance in adults (0.34 L/min, p = 0.002). Bland–Altman’s proportional errors were not statistically significant when CO(PCA)/CO(2D) differences were analysed in children and adolescents. Higher AIx and LVEDD levels associated greater CO(2D)/CO(PCA) differences; higher AIx and HR levels were associated to differences between CO(VTI) and CO(PCA).

Conclusion

CO(PCA) had systematic (< 0.17 L/min) and percent (≤ 30%) errors, which allow us to postulate that its use allows reaching levels comparable to those of echocardiography. Differences in CO-data between methods were associated with arterial and cardiac properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abu-Arafeh, A., H. Jordan, and G. Drummond. Reporting of method comparison studies: a review of advice, an assessment of current practice, and specific suggestions for future reports. Br. J. Anaesth. 117(5):569–575, 2016.

    Article  Google Scholar 

  2. Bergamaschi, V., G. L. Vignazia, A. Messina, D. Colombo, G. Cammarota, F. D. Corte, E. Traversi, and P. Navalesi. Transthoracic echocardiographic assessment of cardiac output in mechanically ventilated critically ill patients by intensive care unit physicians. Rev. Bras. Anestesiol. 69(1):20–26, 2019.

    Article  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8:135–160, 1999.

    Article  Google Scholar 

  4. Broch, O., B. Bein, M. Gruenewald, S. Masing, K. Huenges, A. Haneya, M. Steinfath, and J. Renner. Accuracy of cardiac output by nine different pulse contour algorithms in cardiac surgery patients: a comparison with transpulmonary thermodilution. Biomed. Res. Int. 2016:3468015, 2016.

    Article  Google Scholar 

  5. Camporota, L., and R. Beale. Pitfalls in haemodynamic monitoring based on the arterial pressure waveform. Crit. Care 14(2):124, 2010.

    Article  Google Scholar 

  6. Cecconi, M., A. Rhodes, J. Poloniecki, G. Della Rocca, and R. M. Grounds. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies—with specific reference to the measurement of cardiac output. Crit. Care 13(1):201, 2009.

    Article  Google Scholar 

  7. Critchley, L. A., and J. A. Critchley. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 15(2):85–91, 1999.

    Article  Google Scholar 

  8. Curcio, S., V. García-Espinosa, M. Arana, I. Farro, P. Chiesa, G. Giachetto, Y. Zócalo, and D. Bia. Growing-related changes in arterial properties of healthy children, adolescents, and young adults nonexposed to cardiovascular risk factors: analysis of gender-related differences. Int. J. Hypertens. 2016:4982676, 2016.

    Article  Google Scholar 

  9. de Wilde, R. B., J. J. Schreuder, P. C. van den Berg, and J. R. Jansen. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia 62(8):760–768, 2007.

    Article  Google Scholar 

  10. Díaz, A., Y. Zócalo, and D. Bia. Reference intervals and percentile curves of echocardiographic left ventricular mass, relative wall thickness and ejection fraction in healthy children and adolescents. Pediatr. Cardiol. 40(2):283–301, 2019.

    Article  Google Scholar 

  11. Díaz, A., Y. Zócalo, D. Bia, F. Sabino, V. Rodríguez, and E. I. Cabrera Fischer. Reference intervals of aortic pulse wave velocity assessed with an oscillometric device in healthy children and adolescents from Argentina. Clin. Exp. Hypertens. 41(2):101–112, 2019.

    Article  Google Scholar 

  12. Díaz, A., Y. Zócalo, D. Bia, S. Wray, and E. C. Fischer. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. (Greenwich) 20(4):659–671, 2018.

    Article  Google Scholar 

  13. Díaz, A., Y. Zócalo, E. Cabrera-Fischer, and D. Bia. Reference intervals and percentile curve for left ventricular outflow tract (LVOT), velocity time integral (VTI), and LVOT-VTI-derived hemodynamic parameters in healthy children and adolescents: Analysis of echocardiographic methods association and agreement. Echocardiography 35(12):2014–2034, 2018.

    Article  Google Scholar 

  14. García, X., L. Mateu, J. Maynar, J. Mercadal, A. Ochagavía, and A. Ferrandiz. Estimating cardiac output. Utility in the clinical practice. Available invasive and non-invasive monitoring. Med. Intensiva 35(9):552–561, 2011.

    Article  Google Scholar 

  15. Gottdiener, J. S., J. Bednarz, R. Devereux, J. Gardin, A. Klein, W. J. Manning, A. Morehead, D. Kitzman, J. Oh, M. Quinones, N. B. Schiller, J. H. Stein, and N. J. Weissman. American Society of Echocardiography. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J. Am. Soc. Echocardiogr. 17(10):1086–1190, 2004.

    Google Scholar 

  16. Grensemann, J. Cardiac output monitoring by pulse contour analysis, the technical basics of less-invasive techniques. Front. Med. (Lausanne) 5:64, 2018.

    Article  Google Scholar 

  17. Joosten, A., O. Desebbe, K. Suehiro, L. S. Murphy, M. Essiet, B. Alexander, M. O. Fischer, L. Barvais, L. Van Obbergh, D. Maucort-Boulch, and M. Cannesson. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysis†. Br. J. Anaesth. 118(3):298–310, 2017.

    Article  Google Scholar 

  18. Lang, R. M., L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, P. Lancellotti, D. Muraru, M. H. Picard, E. R. Rietzschel, L. Rudski, K. T. Spencer, W. Tsang, and J. U. Voigt. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 16(3):233–270, 2015.

    Article  Google Scholar 

  19. Majonga, E. D., A. M. Rehman, G. McHugh, H. A. Mujuru, K. Nathoo, M. S. Patel, S. Munyati, J. O. Odland, K. Kranzer, J. P. Kaski, and R. A. Ferrand. Echocardiographic reference ranges in older children and adolescents in sub-Saharan Africa. Int. J. Cardiol. 248:409–413, 2017.

    Article  Google Scholar 

  20. Monnet, X., and J. L. Teboul. Passive leg raising: five rules, not a drop of fluid!. Crit. Care 19:18, 2015.

    Article  Google Scholar 

  21. Odor, P. M., S. Bampoe, and M. Cecconi. Cardiac output monitoring: validation studies-how results should be presented. Curr. Anesthesiol. Rep. 7(4):410–415, 2017.

    Article  Google Scholar 

  22. Papaioannou, T. G., D. Soulis, O. Vardoulis, A. Protogerou, P. P. Sfikakis, N. Stergiopulos, and C. Stefanadis. First in vivo application and evaluation of a novel method for non-invasive estimation of cardiac output. Med. Eng. Phys. 36(10):1352–1357, 2014.

    Article  Google Scholar 

  23. Peyton, P. J., and S. W. Chong. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology 113(5):1220–1235, 2010.

    Article  Google Scholar 

  24. Pickett, J. D., E. Bridges, P. A. Kritek, and J. D. Whitney. Passive leg-raising and prediction of fluid responsiveness: systematic review. Crit. Care Nurse. 37(2):32–47, 2017.

    Article  Google Scholar 

  25. Porter, T. R., S. K. Shillcutt, M. S. Adams, G. Desjardins, K. E. Glas, J. J. Olson, and R. W. Troughton. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 28(1):40–56, 2015.

    Article  Google Scholar 

  26. Schlöglhofer, T., H. Gilly, and H. Schima. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can. J. Anaesth. 61(5):452–479, 2014.

    Article  Google Scholar 

  27. Suehiro, K., A. Joosten, L. S. Murphy, O. Desebbe, B. Alexander, S. H. Kim, and M. Cannesson. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis. J. Clin. Monit. Comput. 30(5):603–620, 2016.

    Article  Google Scholar 

  28. Townsend, R. R., H. R. Black, J. A. Chirinos, P. U. Feig, K. C. Ferdinand, M. Germain, C. Rosendorff, S. P. Steigerwalt, and J. A. Stepanek. Clinical use of pulse wave analysis: proceedings from a symposium sponsored by North American Artery. J. Clin. Hypertens. (Greenwich) 17(7):503–513, 2015.

    Article  Google Scholar 

  29. Villavicencio, C., J. Leache, J. Marin, I. Oliva, A. Rodriguez, M. Bodí, and N. J. Soni. Basic critical care echocardiography training of intensivists allows reproducible and reliable measurements of cardiac output. Ultrasound. J. 11(1):5, 2019.

    Article  Google Scholar 

  30. Wassertheurer, S., J. Kropf, T. Weber, M. van der Giet, J. Baulmann, M. Ammer, B. Hametner, C. C. Mayer, B. Eber, and D. Magometschnigg. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J. Hum. Hypertens. 24(8):498–504, 2010.

    Article  Google Scholar 

  31. Weber, T., S. Wassertheurer, M. Rammer, E. Maurer, B. Hametner, C. C. Mayer, J. Kropf, and B. Eber. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension 58(5):825–832, 2011.

    Article  Google Scholar 

  32. Weiss, W., C. Gohlisch, C. Harsch-Gladisch, M. Tölle, W. Zidek, and M. van der Giet. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press. Monit. 17(3):128–131, 2012.

    Article  Google Scholar 

  33. Wetterslev, M., H. Møller-Sørensen, R. R. Johansen, and A. Perner. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 42(8):1223–1233, 2016.

    Article  Google Scholar 

  34. World Health Organization. Child and adolescent health and development. In: http://www.searo.who.int/entity/child_adolescent/topics/adolescent_health/en/). Accessed 30 August 2019.

  35. Zocalo, Y., J. M. Castro, V. Garcia-Espinosa, S. Curcio, P. Chiesa, G. Giachetto, E. I. Cabrera-Fischer, and D. Bia. Forward and backward aortic components and reflection indexes in children and adolescents: determinants and role in high pressure states. Curr. Hypertens. Rev. 14(2):137–153, 2018.

    Google Scholar 

  36. Zócalo, Y., S. Curcio, V. García-Espinosa, P. Chiesa, G. Giachetto, and D. Bia. Comparative analysis of arterial parameters variations associated with inter-individual variations in peripheral and aortic blood pressure: cross-sectional study in healthy subjects aged 2–84 years. High Blood Press. Cardiovasc. Prev. 24(4):437–451, 2017.

    Article  Google Scholar 

  37. Zocalo, Y., M. Marin, S. Curcio, V. Garcia-Espinosa, P. Chiesa, G. Giachetto, E. I. Cabrera-Fischer, and D. Bia. Increases in peripheral systolic pressure levels and z-score associate gradual aortic pressure increase and functional arterial impairment in children and adolescents. Curr. Hypertens. Rev. 14(2):170–182, 2018.

    Google Scholar 

Download references

Disclousure of interest

Yanina Zócalo, Alejandro Díaz, and Daniel Bia have no conflicts of interest to declare.

Funding

This work was supported by the Agencia Nacional de Investigación e Innovación (ANII) under Grant (PRSCT-008-020) and Espacio Interdisciplinario (EI) and Comisión Sectorial de Investigación Científica (CSIC-Udelar) of the Republic University, Uruguay. Additionally, this work was supported by extrabudgetary funds generated by CUiiDARTE Centre and Project. None of these organizations influenced the study design or collection, analysis, and interpretation of data; the writing of the report; or the decision to submit the manuscript for publication.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanina Zócalo.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Supplementary material 2 (DOCX 39 kb)

Supplementary material 3 (DOCX 23 kb)

Supplementary material 4 (DOCX 310 kb)

Supplementary material 5 (DOCX 17 kb)

13239_2019_439_MOESM6_ESM.tif

Figure S1 Association analysis (correlation) between cardiac output (CO) obtained by different methods, for the entire group (All) and age related subgroups. Regression and equality lines are shown in each scatter-diagram. (TIFF 656 kb)

13239_2019_439_MOESM7_ESM.tif

Figure S2 Association analysis (correlation) between cardiac output (CO) obtained with different Mobil-O-Graph related signal quality scores, for the entire group (All) and age-related subgroups. Regression and equality lines are shown in each scatter-diagram. (TIFF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zócalo, Y., Díaz, A. & Bia, D. Cardiac Output Monitoring in Children, Adolescents and Adults Based on Pulse Contour Analysis: Comparison with Echocardiography-Derived Data and Identification of Factors Associated with Their Differences. Cardiovasc Eng Tech 11, 67–83 (2020). https://doi.org/10.1007/s13239-019-00439-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00439-w

Keywords

Navigation