Skip to main content

Advertisement

Log in

Objective Uniaxial Identification of Transition Points in Non-Linear Materials: Sample Application to Porcine Coronary Arteries and the Dependency of Their Pre- and Post-Transitional Moduli with Position

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to develop an objective method for the elastic characterisation of pre- and post-transitional moduli of left anterior descending (LAD) porcine coronary arteries.

Methods

Eight coronary arteries were divided into proximal, middle and distal test specimens. Specimens underwent uniaxial extension up to 3 mm. Force–displacement measurements were used to determine the induced true stress and stretch for each specimen. A local maximum of the stretch-true stress data was used to identify a transition point. Pre- and post-transitional moduli were calculated up to and from this point, respectively.

Results

The mean pre-transitional moduli for all specimens was 0.76 MPa, as compared to 4.86 MPa for the post-transitional moduli. However, proximal post-transitional moduli were significantly greater than that of middle and distal test specimens (p < 0.05).

Conclusion

Post-transitional uniaxial properties of the LAD are dependent on location along the artery. Further, it is feasible to objectively identify a transition point between pre- and post-transitional moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abaqus version 6.10. Abaqus Analysis User’s Manual; Part V: Materials. Providence: Dassault Systemes Simulia Corporation, 2010.

    Google Scholar 

  2. Aidulis, D., D. E. Pegg, C. J. Hunt, Y. A. Goffin, A. Vanderkelen, B. van Hoeck, et al. Processing of ovine cardiac valve allografts: 1. Effects of preservation method on structure and mechanical properties. Cell Tissue Bank 3:79–89, 2002.

    Article  Google Scholar 

  3. Arbab-Zadeh, A., A. N. DeMaria, W. F. Penny, R. J. Russo, B. J. Kimura, and V. Bhargava. Axial movement of the intravascular ultrasound probe during the cardiac cycle: implications for three-dimensional reconstruction and measurements of coronary dimensions. Am. Heart J. 138:865–872, 1999.

    Article  Google Scholar 

  4. Baxter, J., K. G. Buchan, and D. M. Espino. Viscoelastic properties of mitral valve leaflets: an analysis of regional variation and frequency-dependency. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 231:938–944, 2017.

    Article  Google Scholar 

  5. Burton, H. E., J. M. Freij, and D. M. Espino. Dynamic viscoelasticity and surface properties of porcine left anterior descending coronary arteries. Cardiovasc. Eng. Technol. 8:41–56, 2017.

    Article  Google Scholar 

  6. Burton, H. E., R. L. Williams, and D. M. Espino. Effects of freezing, fixation and dehydration on surface roughness properties of porcine left anterior descending coronary arteries. Micron 101:78–86, 2017.

    Article  Google Scholar 

  7. Claes, E., Atienza, J., Guinea, G., Rojo, F., Bernal, J., Revuelta, J., et al. Mechanical properties of human coronary arteries. Engineering in Medicine and Biology Society (EMBC). In: 2010 Annual International Conference of the IEEE, IEEE, 2010, pp. 3792–3795.

  8. Constable, M., H. E. Burton, B. M. Lawless, V. Gramigna, K. G. Buchan, and D. M. Espino. Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae. Biomed. Eng. Online 17:93, 2018.

    Article  Google Scholar 

  9. Dodge, J., B. G. Brown, E. L. Bolson, and H. T. Dodge. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246, 1992.

    Article  Google Scholar 

  10. Espino, D. M., D. W. L. Hukins, D. E. T. Shepherd, M. A. Watson, and K. G. Buchan. Determination of the pressure required to cause mitral valve failure. Med. Eng. Phys. 28:36–41, 2006.

    Article  Google Scholar 

  11. Espino, D. M., D. E. T. Shepherd, and K. G. Buchan. Effect of mitral valve geometry on valve competence. Heart Vessels 22:109–115, 2007.

    Article  Google Scholar 

  12. Espino, D. M., D. E. T. Shepherd, and D. W. L. Hukins. Development of a transient large strain contact method for biological heart valve simulations. Comput. Methods Biomech. Biomed. Eng. 16:413–424, 2013.

    Article  Google Scholar 

  13. Espino, D. M., D. E. T. Shepherd, and D. W. L. Hukins. Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve. Comput. Methods Biomech. Biomed. Eng. 17:450–458, 2014.

    Article  Google Scholar 

  14. Espino, D. M., D. E. T. Shepherd, D. W. L. Hukins, and K. G. Buchan. The role of chordae tendineae in mitral valve competence. J. Heart Valve Dis. 14:603–609, 2005.

    Google Scholar 

  15. Freed, A. D., and T. C. Doehring. Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127:587–593, 2005.

    Article  Google Scholar 

  16. Goh, K. L., Y. Chen, S. M. Chou, A. Listrat, D. Bechet, and T. J. Wess. Effects of frozen storage temperature on the elasticity of tendons from a small murine model. Animal 4:1613–1617, 2010.

    Article  Google Scholar 

  17. Guo, X., Y. Liu, and G. S. Kassab. Diameter-dependent axial prestretch of porcine coronary arteries and veins. J. Appl. Physiol. 112:982–989, 2012.

    Article  Google Scholar 

  18. Holzapfel, G. A. Biomechanics of soft tissue. In: The Handbook of Materials Behavior Models: Nonlinear Models and Properties, edited by J. Lemaitre. France: Academic Press, 2010.

    Google Scholar 

  19. Holzapfel, G. A., T. C. Gasser, and M. Stadler. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A Solids 21:441–463, 2002.

    Article  MATH  Google Scholar 

  20. Holzapfel, G. A., and R. W. Ogden. Constitutive modelling of arteries. Proc. R. Soc. A Math. Phys. Eng. Sci. 466:1551–1597, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  21. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  Google Scholar 

  22. Humphrey, J. D. Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer, 2002.

    Book  Google Scholar 

  23. Karimi, A., M. Navidbakhsh, A. Shojaei, and S. Faghihi. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater. Sci. Eng. C Mater. Biol. Appl. 33:2550–2554, 2013.

    Article  Google Scholar 

  24. Katz, A. M. Physiology of the Heart (5th ed.). Philadelphia: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  25. Khoffi, F., and F. Heim. Private mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment. J. Mech. Behav. Biomed. Mater. 44:71–75, 2015.

    Article  Google Scholar 

  26. Klabunde, R. Cardiovascular Physiology Concepts (2nd ed.). Philadelphia: Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  27. Konta, T., J. Hugh, and N. Bett. Patterns of coronary artery movement and the development of coronary atherosclerosis. Circulation 67:846–850, 2003.

    Article  Google Scholar 

  28. Kural, M. H., M. Cai, D. Tang, T. Gwyther, J. Zheng, and K. L. Billiar. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J. Biomech. 45:790–798, 2012.

    Article  Google Scholar 

  29. Lally, C., A. Reid, and P. Prendergast. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32:1355–1364, 2004.

    Article  Google Scholar 

  30. Lawless, B. M., S. C. Barnes, D. M. Espino, and D. E. T. Shepherd. Viscoelastic properties of a spinal posterior dynamic stabilisation device. J. Mech. Behav. Biomed. Mater. 59:519–526, 2016.

    Article  Google Scholar 

  31. Leung, W. H., M. L. Stadius, and E. L. Alderman. Determinants of normal coronary artery dimensions in humans. Circulation 84:2294–2306, 1991.

    Article  Google Scholar 

  32. Lu, X., A. Pandit, and G. S. Kassab. Biaxial incremental homeostatic elastic moduli of coronary artery: two-layer model. Am. J. Physiol. Heart Circ. Physiol. 287:H1663–H1669, 2004.

    Article  Google Scholar 

  33. Mackay, J., and G. A. Mensah. The Atlas of Heart Disease and Stroke. Geneva: World Health Organization, 2004.

    Google Scholar 

  34. Millard, L., D. M. Espino, D. E. T. Shepherd, D. W. L. Hukins, and K. G. Buchan. Mechanical properties of chordae tendineae of the mitral heart valve: young’s modulus, structural stiffness, and effects of aging. J. Mech. Med. Biol. 11:221–230, 2011.

    Article  Google Scholar 

  35. Muller-Schweinitzer, E. Cryopreservation of vascular tissues. Organogen. 5:97–104, 2009.

    Google Scholar 

  36. Öhman, C., M. Baleani, and M. Viceconti. Repeatability of experimental procedures to determine mechanical behaviour of ligaments. Acta Bioeng. Biomech. 11:19–23, 2009.

    Google Scholar 

  37. Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med. Eng. Phys. 20:523–533, 1998.

    Article  Google Scholar 

  38. Perry, R., M. X. Joseph, D. P. Chew, P. E. Aylward, and C. G. De Pasquale. Coronary artery wall thickness of the left anterior descending artery using high resolution transthoracic echocardiography—normal range of values. Echocardiography 30:759–764, 2013.

    Article  Google Scholar 

  39. Sadeghi, H., D. M. Espino, and D. E. T. Shepherd. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 229:115–123, 2015.

    Article  Google Scholar 

  40. Thomas-Seale, L. E. J., L. Hollis, D. Klatt, I. Sack, N. Roberts, P. Pankaj, and P. R. Hoskins. The simulation of magnetic resonance elastography through atherosclerosis. J. Biomech. 49:1781–1788, 2016.

    Article  Google Scholar 

  41. Townsend Jr, C. M., R. D. Beauchamp, B. M. Evers, and K. L. Mattox. Sabiston Textbook of Surgery (19th ed.). Philadelphia: Elsevier, 2012.

    Google Scholar 

  42. Van Andel, C. J., P. V. Pistecky, and C. Borst. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76:58–64, 2003.

    Article  Google Scholar 

  43. Venkatasubramanian, R. T., E. D. Grassl, V. H. Barocas, D. Lafontaine, and J. C. Bischof. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann. Biomed. Eng. 34:823–832, 2006.

    Article  Google Scholar 

  44. Wang, C., M. Garcia, X. Lu, Y. Lanir, and G. S. Kassab. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am. J. Physiol. Heart Circ. Physiol. 291:H1200–H1209, 2006.

    Article  Google Scholar 

  45. Wilcox, A. G., K. G. Buchan, and D. M. Espino. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae. J. Mech. Behav. Biomed. Mater. 30:186–195, 2014.

    Article  Google Scholar 

  46. Zhang, L., D. Xu, X. Liu, X. S. Wu, Y. N. Ying, Z. Dong, et al. Coronary artery lumen diameter and bifurcation angle derived from CT coronary angiographic image in healthy people. Chin. J. Cardiol. 39:1117–1123, 2011.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering and Physical Sciences Research Council for the studentship for HEB [EP/M114612B]. The equipment used in this study was funded by Arthritis Research UK [H0671].

Author information

Authors and Affiliations

Authors

Contributions

JMF participated in the study’s design, performed mechanical testing and drafted the initial manuscript. HEB conceived the study, participated in its design, and edited the manuscript. DME conceived the study, participated in its design, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel M. Espino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

No animals were sacrificed specifically for this study. Porcine hearts were supplied by Fresh Tissue Supplies (Horsham, UK). Ethical approval was granted for this study by the University of Birmingham Research Support Group [ERN_15-0032].

Additional information

Associate Editors Dr. Ajit P. Yoganathan and Dr. Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freij, J.M., Burton, H.E. & Espino, D.M. Objective Uniaxial Identification of Transition Points in Non-Linear Materials: Sample Application to Porcine Coronary Arteries and the Dependency of Their Pre- and Post-Transitional Moduli with Position. Cardiovasc Eng Tech 10, 61–68 (2019). https://doi.org/10.1007/s13239-018-00395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00395-x

Keywords

Navigation