Skip to main content

Advertisement

Log in

Energy Costs of Singular and Concomitant Pressure and Volume Overload Lesions

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Severity assessment in concomitant hypertension (HT) and heart valve disease or multiple heart valve disease is vague, and there exists no established severity index. The objective of this study is to propose a theoretical framework to utilize the ventricular power overhead rates of HT, aortic regurgitation (AR), aortic stenosis (AS), and mitral regurgitation (MR) as a new means to assess severity, particularly under concomitant conditions. A lumped parameter model was utilized to evaluate the ventricular energy budget under normal, singular, and concomitant combinations of HT, AS, AR, and MR; and calculate energy overhead rate defined as the % increase in ventricular power output. Disease severity for each lesion was modeled at mild, moderate, and severe levels per AHA/ACC guidelines. The overhead rate for HT and AS were 15% (mild), 25% (moderate), and 45% (severe); AR and MR corresponded to 40% (moderate) and 100% (severe). The overhead rate as a function of regurgitant fraction was shown to be highly nonlinear. The overhead rate for concomitant lesions were 39% (mild HT+mild AS), 51% (mild HT+mild AR), 46% (mild HT+mild MR), 51% (mild AS+mild AR), 37% (mild AS+mild MR), and 44% (mild AR+mild MR). Power overhead under volume overload increases nonlinearly while that for pressure overload is linear. Concomitant lesions involving pressure (and volume?) overload produce a net overhead rate greater than the sum of individual lesions. Synergy in overhead rates is most with the presence of uncontrolled HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abdolrazaghi, M., M. Navidbakhsh, and K. Hassani. Mathematical modelling and electrical analog equivalent of the human cardiovascular system. Cardiovasc. Eng. 10:45–51, 2010.

    Article  Google Scholar 

  2. Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon, D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, J. S. Shanewise, S. C. Smith, A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, V. Fuster, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, R. Nishimura, R. L. Page, and B. Riegel. Amer Col Cardiology Amer, H., 2006. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation 114:E84–E231, 2006.

    Article  Google Scholar 

  3. Chandran, K. B., A. P. Yoganathan, and S. E. Rittgers. Biofluid Mechanics: The Human Circulation. Routledge: Taylor and Francis, 2006.

    Google Scholar 

  4. Couet, J., M. Gaudreau, D. Lachance, E. Plante, E. Roussel, M. C. Drolet, and M. Arsenault. Treatment of combined aortic regurgitation and systemic hypertension: insights from an animal model study. Am. J. Hypertens. 19:843–850, 2006.

    Article  Google Scholar 

  5. Dasi, L. P., K. Pekkan, D. de Zelicourt, K. S. Sundareswaran, R. Krishnankutty, P. J. Delnido, and A. P. Yoganathan. Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states. Ann. Biomed. Eng. 37:661–673, 2009.

    Article  Google Scholar 

  6. Garcia, D., P. Pibarot, J. G. Dumesnil, F. Sakr, and L. G. Durand. Assessment of aortic valve stenosis severity—a new index based on the energy loss concept. Circulation 101:765–771, 2000.

    Article  Google Scholar 

  7. Korakianitis, T., and Y. B. Shi. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39:1964–1982, 2006.

    Article  Google Scholar 

  8. MacIsaac, A. I., I. G. McDonald, R. L. Kirsner, S. A. Graham, and D. Tanzer. Left ventricular energy in mitral regurgitation: a preliminary report. Aust. N Z J. Med. 22:532–540, 1992.

    Article  Google Scholar 

  9. Pibarot, P., and J. G. Dumesnil. Improving assessment of aortic stenosis. J. Am. Coll. Cardiol. 60:169–180, 2012.

    Article  Google Scholar 

  10. Rieck, A. E., D. Cramariuc, K. Boman, C. Gohlke-Barwolf, E. M. Staal, M. T. Lonnebakken, A. B. Rossebo, and E. Gerdts. Hypertension in aortic stenosis implications for left ventricular structure and cardiovascular events. Hypertension 60:90–97, 2012.

    Article  Google Scholar 

  11. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer-simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  Google Scholar 

  12. Unger, P., C. Dedobbeleer, G. Van Camp, D. Plein, B. Cosyns, and P. Lancellotti. Mitral regurgitation in patients with aortic stenosis undergoing valve replacement. Heart 96:9–14, 2010.

    Article  Google Scholar 

Download references

Acknowlegment

This work was funded by the American Heart Association. Grant# 11SDG5170011.

Conflict of Interest Statement

Authors Canek Phillips, Rachael L. Simon-Walker, and Lakshmi Prasad Dasi declare that they have no conflict of interest.

Informed Consent Statement

No human studies were carried out by the authors for this article.

Animal Studies Statement

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Appendix: Estimating Power Overhead For AR and MR

Appendix: Estimating Power Overhead For AR and MR

Power Overhead for MR

Baseline: Let P be the mean ventricular pressure, and SV the stroke volume. Work done in one heart beat equals P*SV.

MR: Now, let RF be the mitral regurgitant fraction. If the net cardiac output is the same as baseline, then the ventricular stroke volume equals SV/(1 − RF). Work done in one heart beat equals P*SV/(1 − RF)

$$ \begin{gathered} {\text{Overhead rate }} = \, \left( {P*SV/\left( {1 - RF} \right) \, - P*SV} \right)/ \, \left( {P*SV} \right) \hfill \\ = \, 1/\left( {1 - RF} \right) \, {-} \, 1 \, = {\text{ RF}}/\left( {1 - {\text{RF}}} \right). \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, C., Simon-Walker, R.L. & Dasi, L.P. Energy Costs of Singular and Concomitant Pressure and Volume Overload Lesions. Cardiovasc Eng Tech 5, 44–53 (2014). https://doi.org/10.1007/s13239-013-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0173-3

Keywords

Navigation