Skip to main content
Log in

Biomimetic Calcium Phosphate Coated Macro-Microporous Poly(ε-caprolactone)/Silk Fibroin (PCL/SF) Scaffold for Bone Tissue Engineering

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Because of an aging population and social development, tissue engineering techniques have been widely studied and used for patient treatment. To improve bone regeneration and overcome disadvantages, suitable biomaterials have to be chosen. Polycaprolactone (PCL) is extensively used in bone tissue engineering, known for its excellent mechanical properties, high crystallinity, toughness, and bio-compatibility. In addition, porous PCL can induce bone ingrowth into its macropores and can be used for the repair and regeneration of the bone. However, PCL has limited cell affinity primarily owing to the lack of cell recognition sites due to its hydrophobic surface. To compensate drawbacks of PCL scaffolds, silk fibroin (SF), non-solvent and thermal-induced phase separation (N-TIPS), and salt-leaching were utilized in this study. Additionally, to overcome the disadvantage that the polymeric scaffold may be insignificant for osteoinduction, PCL/SF scaffolds were coated with calcium phosphate (CaP) (c-PCL/SF). Physicochemical properties, biological activity, and mechanical characters were analyzed to confirm applicability in bone tissue engineering. Also, in vitro study was performed with viability test, morphology study, proliferation test, and gene expression evaluation. The mechanical property of the c-PCL/SF scaffold was improved when compared to the coated PCL scaffold (c-PCL), and the bioactivity of the c-PCL/SF showed a high amount of apatite formation. Also, bone marrow stem cells (BMSC) cultured in c-PCL/SF scaffolds showed enhanced viability and bone-specific gene expression than the BMSC cultured in c-PCL. Overall, the c-PCL/SF scaffolds were compatible material to apply in bone tissue engineering biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ragunathan, G. Govindasamy, D. R. Raghul, M. Karuppaswamy, and R. K. VijayachandraTogo, Mater. Today Proc., 23, 111 (2019).

    Google Scholar 

  2. L. Xiao, M. Wu, F. Yan, Y. Xie, Z. Liu, H. Huang, Z. Yang, S. Yao, and L. Cai, Int. J. Biol. Macromol., 172, 19 (2021).

    CAS  PubMed  Google Scholar 

  3. X. Xing, G. Cheng, C. Yin, X. Cheng, Y. Cheng, Y. Ni, X. Zhou, H. Deng, and Z. Li, Arab. J. Chem., 13, 5526 (2020).

    CAS  Google Scholar 

  4. M. Farokhi, F. Mottaghitalab, S. Samani, M. A. Shokrgozar, S. C. Kundu, R. L. Reis, Y. Fatahi, and D. L. Kaplan, Biotechnol. Adv., 36, 68 (2018).

    CAS  PubMed  Google Scholar 

  5. R. Dwivedi, S. Kumar, R. Pandey, A. Mahajan, E. Nandana, D. S. Katti, and D. Mehrotra, J. Oral Biol. Craniofacial Res., 10, 381 (2020).

    Google Scholar 

  6. J. Luo, H. Zhang, J. Zhu, X. Cui, J. Gao, X. Wang, and J. Xiong, Colloids Surf. B Biointerfaces, 163, 369 (2018).

    CAS  PubMed  Google Scholar 

  7. A. A. Ia and A. A. Kareem, Mater. Sci. Pol., 34, 132 (2016).

    Google Scholar 

  8. M. Abedalwafa, F. Wang, L. Wang, and C. Li., Rev. Adv. Mater. Sci., 34, 123 (2013).

    CAS  Google Scholar 

  9. M. A. Nazeer, E. Yilgor, and I. Yilgor, Polymer, 168, 86 (2019).

    CAS  Google Scholar 

  10. S. R. Caliari and J. A. Burdick, Nat. Methods, 13, 405 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. A. A. Kareem, Mater. Sci. Pol., 35, 755 (2017).

    CAS  Google Scholar 

  12. A. A. Kareem, Mater. Sci. Pol., 36, 283 (2018).

    CAS  Google Scholar 

  13. A. A. Kareem, Adv. Compos. Lett., 29, 1 (2020).

    Google Scholar 

  14. H. K. Rasheed, and A. A. Kareem, J. Opt. Commun., 42, 25 (2021).

    Google Scholar 

  15. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 275, 40517 (2000).

    CAS  PubMed  Google Scholar 

  16. N. Drnovšek, R. Kocen, A. Gantar, M. Drobnič-Košorok, A. Leonardi, I. Križaj, A. Rečnik, and S. Novak, J. Mater. Chem. B, 4, 6597 (2016).

    PubMed  Google Scholar 

  17. H. K. Rasheed, and A. A. Kareem, Iraqi. J. Sci., 61, 3235 (2020).

    Google Scholar 

  18. X. D Kong, F. Z. Cui, X. M. Wang, M. Zhang, and W. Zhang, J. Cryst. Growth, 270, 197 (2004).

    Google Scholar 

  19. Y. Meng, Y. X. Qin, E. Dimasi, X. Ba, M. Rafailovich, and N. Pernodet, Tissue Eng. Part A, 15, 355 (2009).

    CAS  PubMed  Google Scholar 

  20. J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang, and C. Y. Heo, Biomater. Res., 23, 1 (2019).

    CAS  Google Scholar 

  21. Q. Hu, Z. Tan, Y. Liu, Jinhui Taoa, Y. Cai, M. Zhang, H. Pan, X. Xu, and R. Tang, J. Mater. Chem., 17, 4690 (2007).

    CAS  Google Scholar 

  22. A. A. Kareem and H. K. Rasheed, Mater. Sci. Pol., 37, 622 (2019).

    CAS  Google Scholar 

  23. A. A. Kareem, H. K. Rasheed, and E. M. Nasir, Polym. Bull., 79, 6617 (2021).

    Google Scholar 

  24. H. Zhang, X. Liu, M. Yang, and L. Zhu, Mater. Sci. Eng. C, 55, 8 (2015).

    Google Scholar 

  25. J. T. Jung, H. H. Wang, J. F. Kim, J. Lee, J. S. Kim, E. Drioli, and Y. M. Lee, J. Membr. Sci., 559, 117 (2018).

    CAS  Google Scholar 

  26. V. Cannillo, F. Chiellini, P. Fabbri, and A. Sola, Compos. Struct., 92, 1823 (2010).

    Google Scholar 

  27. D. Y. Kwon, J. Y. Park, B. Y. Lee, and M. S. Kim, Polymers, 12, 2210 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. F. Dehghani, and N. Annabi, Curr. Opin. Biotechnol., 22, 661 (2011).

    CAS  PubMed  Google Scholar 

  29. F. Yang, J. G. C. Wolke, and J. A. Jansen, Chem. Eng. J., 137, 154 (2008).

    CAS  Google Scholar 

  30. K. J. Livak and T. D. Schmittgen, Methods, 25, 402 (2001).

    CAS  PubMed  Google Scholar 

  31. N. Abbasi, S. Hamlet, R. M. Love, and N. T. Nguyen, J. Sci. Adv. Mater. Devices, 5, 1 (2020).

    Google Scholar 

  32. M. Sari, P. Hening, Chotimah, I. D. Ana, and Y. Yusuf, Biomater. Res., 25, 1 (2021).

    Google Scholar 

  33. H. Liu, H. Yazici, C. Ergun, T. J. Webster, and H. Bermek, Acta Biomater., 4, 1472 (2008).

    CAS  PubMed  Google Scholar 

  34. S. Zeng, L. Liu, Y. Shi, J. Qiu, W. Fang, M. Rong, Z. Guo, and W. Gao, PLoS One, 10, 1 (2015).

    Google Scholar 

  35. K. Wang, C. Zhou, Y. Hong, and X. Zhang, Interface Focus, 2, 259 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. T. Almela, I. M. Brook, K. Khoshroo, M. Rasoulianboroujeni, F. Fahimipour, M. Tahriri, E. Dashtimoghadam, A. El-Awa, L. Tayebi, and K. Moharamzadeh, Bioprinting, 6, 1 (2017).

    Google Scholar 

  37. X. Liu, B. Chen, Y. Li, Y. Kong, M. Gao, L. Z. Zhang, and N. Gu, J. Bioact. Compat. Polym., 36, 59 (2021).

    CAS  Google Scholar 

  38. Y. Cheng, L. D. Koh, D. Li, B. Ji, M. Y. Han, and Y. W. Zhang, J. R. Soc. Interface, 11 (2014).

  39. M. Yeo and G. Kim, J. Mater. Chem. B, 2, 314 (2014).

    CAS  PubMed  Google Scholar 

  40. O. Jung, M. Radenkovic, S. Stojanovic, C. Lindner, M. Batinic, O. Görke, J. Pissarek, A. Pröhl, S. Najman and M. Barbeck, In Vivo (Brooklyn), 34, 2287 (2020).

    CAS  Google Scholar 

  41. J. H. Choi, D. K. Kim, J. E. Song, J. M. Oliveira, R. L. Reis, and G. Khang, Adv. Exp. Med. Biol., 1077, 371 (2018).

    CAS  PubMed  Google Scholar 

  42. X. Ying, X. Chen, H. Liu, P. Nie, X. Shui, Y. Shen, K. Yu, and S. Cheng, Eur. J. Pharmacol., 765, 394 (2015).

    CAS  PubMed  Google Scholar 

  43. J. K. Burkhardt, D. Halama, B. Frerich, and F. Gaunitz, Anal. Bioanal. Chem., 393, 1351 (2009).

    CAS  PubMed  Google Scholar 

  44. J. T. Huh, J. U. Lee, W. J. Kim, M. Yeo, and G. H. Kim, Int. J. Biol. Macromol., 110, 488 (2018).

    CAS  PubMed  Google Scholar 

  45. S. Saravanan, A. Chawla, M. Vairamani, T. P. Sastry, K. S. Subramanian, and N. Selvamurugan, Int. J. Biol. Macromol., 104, 1975 (2017).

    CAS  PubMed  Google Scholar 

  46. M. Z. Witkowska, K. Walenko, E. Wrobel, P. Mrowka, A. Mikulska, and J. Przybylski, Cell Biol. Int., 37, 608 (2013).

    Google Scholar 

  47. E. Ko, J. S. Lee, H. Kim, S. Y. Yang, D. Yang, K. Yang, J. Y. Lee, J. Shin, H. S. Yang, W. H. Ryu, and S. W. Cho, ACS Appl. Mater. Interfaces, 10, 7614 (2018).

    CAS  PubMed  Google Scholar 

  48. J. B. Lee, J. E. Kim, M. S. Bae, S. A. Park,, D. A. Balikov, H. J. Sung, H. B. Jeon, H. K. Park, S. H. Um, K. S. Lee, and I. K. Kwon, Polymers (Basel), 8, 1 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang.

Ethics declarations

Conflicts of interest: The authors declare no conflict of interest.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This research was supported by the bilateral cooperation Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2019K2A9A1A06098563).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumursukh, NE., Choi, J.H., Seo, J.S. et al. Biomimetic Calcium Phosphate Coated Macro-Microporous Poly(ε-caprolactone)/Silk Fibroin (PCL/SF) Scaffold for Bone Tissue Engineering. Macromol. Res. 30, 766–775 (2022). https://doi.org/10.1007/s13233-022-0090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0090-0

Keywords

Navigation