Skip to main content
Log in

Preparation of Thin-Layer Graphene Using RAFT Polymerization and a Thiol-Ene Click Reaction

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2019

This article has been updated

Abstract

In this paper, functionalization of graphene is conducted through click reactions for its effective dispersion. The poly(sodium 4-styrenesolfonate) (PSS) was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The chain end dithioester group of RAFT-polymerized PSS was reduced to a thiol and used to couple PSS to graphene oxide (GO) via a thiol-ene click reaction. An aqueous dispersion of reduced GO with PSS (PSS-rGO) resisted sedimentation due to steric effects and charge-charge repulsion between the PSS attached to rGO. Atomic force microscopy showed that the PSS-rGO mixture was composed of dispersed particles of thin-layer (1.5 nm thick) graphene. Thickness of the PSS-rGO was close to that of GO. This indicates that there was no significant re-aggregation during GO reducing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 October 2019

    Page 955, The third author’s name should be corrected as follows: <Emphasis Type="Bold">Minho Kwon</Emphasis><Superscript><Emphasis Type="Bold">1</Emphasis></Superscript>, <Emphasis Type="Bold">Taeheon Lee</Emphasis><Superscript><Emphasis Type="Bold">1</Emphasis></Superscript>, <Emphasis Type="Bold">Young Sil Lee</Emphasis><Superscript><Emphasis Type="Bold">2</Emphasis></Superscript>, <Emphasis Type="Bold">Jong Hun Han</Emphasis><Superscript><Emphasis Type="Bold">*,3</Emphasis></Superscript>, <Emphasis Type="Bold">Hyun-jong Paik</Emphasis><Superscript><Emphasis Type="Bold">*,1</Emphasis></Superscript>

References

  1. Y. Cui, H. Zhang, W. Chen, Z. Yang, and Q. Cai, J. Phys. Chem. C, 121, 15282 (2017).

    Article  CAS  Google Scholar 

  2. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater., 21, 1275 (2009).

    Article  CAS  Google Scholar 

  3. D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, and H.-M. Cheng, ACS Nano, 3, 1745 (2009).

    Article  CAS  Google Scholar 

  4. S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, Carbon, 48, 4466 (2010).

    Article  CAS  Google Scholar 

  5. Y. J. Noh, H.-I. Joh, J. Yu, S. H. Hwang, S. Lee, C. H. Lee, S. Y. Kim, and J. R. Youn, Sci. Rep., 5, 9141 (2015).

    Article  Google Scholar 

  6. J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science, 315, 490 (2007).

    Article  CAS  Google Scholar 

  7. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).

    Article  CAS  Google Scholar 

  8. X. Qi, T. Zhou, S. Deng, G. Zong, X. Yao, and Q. Fu, J. Mater. Sci., 49, 1785 (2014).

    Article  CAS  Google Scholar 

  9. S. Ma, Y. Si, F. Wang, L. Su, C. Xia, J. Yao, H. Chen, and X. Liu, Sci. Rep., 7, 2588 (2017).

    Article  Google Scholar 

  10. M. Lotya, P.J. King, U. Khan, S. De, and J. N. Coleman, ACS Nano, 4, 3155 (2010).

    Article  CAS  Google Scholar 

  11. Z. Sun, S. Pöller, X. Huang, D. Guschin, C. Taetz, P. Ebbinghaus, J. Masa, A. Erbe, A. Kilzer, and W. Schuhmann, Carbon, 64, 288 (2013).

    Article  CAS  Google Scholar 

  12. B.-S. Kim, D. Kim, K.-W. Kim, T. Lee, S. Kim, K. Shin, S. Chun, J. H. Han, Y. S. Lee, and H.-J. Paik, Carbon, 72, 57 (2014).

    Article  CAS  Google Scholar 

  13. T. Lee, B. Kim, S. Kim, J.H. Han, H.B. Jeon, Y.S. Lee, and H.-J. Paik, Nanoscale, 7, 6745 (2015).

    Article  CAS  Google Scholar 

  14. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010).

    Article  CAS  Google Scholar 

  15. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater. Sci., 57, 1061 (2012).

    Article  CAS  Google Scholar 

  16. H. M. Etmimi, M. P. Tonge, and R. D. Sanderson, J. Polym. Sci. Part A: Polym. Chem., 49, 1621 (2011).

    Article  CAS  Google Scholar 

  17. T. A. Pham, N. A. Kumar, and Y. T. Jeong, Synthetic Met., 160, 2028 (2010).

    Article  CAS  Google Scholar 

  18. C. Ding, C. Fan, X. Pan, Z. Zhang, J. Zhu, and X. Zhu, Polym. Chem., 8, 3958 (2017).

    Article  CAS  Google Scholar 

  19. A. D. Jenkins, R. G. Jones, and G. Moad, Pure Appl. Chem., 82, 483 (2009).

    Article  Google Scholar 

  20. S. H. Lee, D. R. Dreyer, J. An, A. Velamakanni, R. D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski, and R. S. Ruoff, Macromol. Rapid Commun., 31, 281 (2010).

    Article  CAS  Google Scholar 

  21. O. García-Valdez, R. Ledezma-Rodríguez, E. Saldívar-Guerra, L. Yate, S. Moya, and R. F. Ziolo, Polymer, 55, 2347 (2014).

    Article  Google Scholar 

  22. Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji, and H. Zhao, J. Polym. Sci. Part A: Polym. Chem., 50, 329 (2012).

    Article  CAS  Google Scholar 

  23. C. E. Hoyle, A. B. Lowe, and C. N. Bowman, Chem. Soc. Rev., 39, 1355 (2010).

    Article  CAS  Google Scholar 

  24. J. Han and C. Gao, Nano-Micro Lett., 2, 213 (2010).

    Article  Google Scholar 

  25. B. Iskin, G. Yilmaz, and Y. Yagci, Chem. A: Europ. J., 18, 10254 (2012).

    CAS  Google Scholar 

  26. X. Luo, K. Ma, T. Jiao, R. Xing, L. Zhang, J. Zhou, and B. Li, Nanoscale Res. Lett., 12, 99 (2017).

    Article  Google Scholar 

  27. J. Zhou, Y. Liu, T. Jiao, R. Xing, Z. Yang, J. Fan, J. Liu, B. Li, Q. Peng, Colloid. Surface. A: Physicochem. Eng. Asp., 538, 7 (2018).

    Article  CAS  Google Scholar 

  28. N. D. Luong, L. H. Sinh, L. S. Johansson, J. Campell, and J. Seppälä, Chem. A: Eur. J., 21, 3183 (2015).

    Google Scholar 

  29. W. Shen, Q. Qiu, Y. Wang, M. Miao, B. Li, T. Zhang, A. Cao, and Z. An, Macromol. Rapid Commun., 31, 1444 (2010).

    Article  Google Scholar 

  30. J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. Tascon, Langmuir, 24, 10560 (2008).

    Article  CAS  Google Scholar 

  31. A. C. de Leon, B. J. Rodier, Q. Luo, C. M. Hemmingsen, P. Wei, K. Abbasi, R. Advincula, and E. B. Pentzer, ACS Nano, 11, 7485 (2017).

    Article  CAS  Google Scholar 

  32. Y. A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, and A. Eckmann, ACS Nano, 6, 6293 (2012).

    Article  CAS  Google Scholar 

  33. T. Kuila, P. Khanra, S. Bose, N. H. Kim, B.-C. Ku, B. Moon, and J. H. Lee, Nanotechnology, 22, 305710 (2011).

    Article  Google Scholar 

  34. F. T. Johra, J.-W. Lee, and W.-G. Jung, J. Indust. Eng. Chem., 20, (2014) 2883–2887.

    Article  CAS  Google Scholar 

  35. S.-K. Jerng, D.S. Yu, J.H. Lee, C. Kim, S. Yoon, and S.-H. Chun, Nanoscale Res. Lett., 6, 565 (2011).

    Article  Google Scholar 

  36. F.-P. Du, N.-N. Cao, Y.-F. Zhang, P. Fu, Y.-G. Wu, Z.-D. Lin, R. Shi, A. Amini, and C. Cheng, Sci. Rep., 8, 6441 (2018).

    Article  Google Scholar 

  37. M. Braglia, I.V. Ferrari, T. Djenizian, S. Kaciulis, P. Soltani, M. L. Di Vona, and P. Knauth, ACS Appl. Mater. Interfaces, 9, 22902 (2017).

    Article  CAS  Google Scholar 

  38. M. P. Araújo, O. Soares, A. Fernandes, M. Pereira, and C. Freire, RSC Adv., 7, 14290 (2017).

    Article  Google Scholar 

  39. C. Zhang, M. Chen, X. Xu, L. Zhang, L. Zhang, F. Xia, X. Li, Y. Liu, W. Hu, and J. Gao, Nanotechnology, 25, 135707 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Hun Han or Hyun-jong Paik.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3A7B4014045). The authors also acknowledge the Korea Basic Science Institute, Busan center, for assistance with the X-ray photoelectron spectroscopy. This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, M., Lee, T., Lee, Y. et al. Preparation of Thin-Layer Graphene Using RAFT Polymerization and a Thiol-Ene Click Reaction. Macromol. Res. 27, 955–962 (2019). https://doi.org/10.1007/s13233-019-7138-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7138-9

Keywords

Navigation