Skip to main content
Log in

Phylogeny of the Acarosporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascomata

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The phylogeny of the Acarosporaceae (Lecanoromycetes, Acarosporomycetidae, Acarosporales) is investigated using data from three molecular markers; nuclear ITS-LSU rDNA, mitochondrial SSU and β-tubulin. Acarosporaceae is shown to be constituted by six main clades; Myriospora, Timdalia, Pleopsidium, a clade composed by “Acarospora” rhizobola and “A.” terricola, the poorly supported Sarcogyne clade (including several Polysporina and Acarospora species) and the Acarospora clade (including the type of Polysporina, P. simplex, and several other Polysporina species). The common ancestor of the Acarosporaceae did not produce strongly black pigmented (carbonized or melanized) ascomata, but this trait has arisen secondarily and independently numerous times in the evolution of the group. The number of changes in character states of both carbonized epihymenium and carbonized exciple are considerably more than the minimum number. The genera Sarcogyne and Polysporina—largely circumscribed based on the presence of black pigmented ascomata—are shown to be distinctly non-monophyletic. The presence of green algae in the ascoma margin (lecanorine or lecideine ascomata) may vary even within single species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahti T, Brodo IM, Noble WJ (1987) Contributions to the lichen flora of British Columbia, Canada. Mycotaxon 28:91–97

    Google Scholar 

  • Aptroot A (2002) New and interesting lichens and lichenicolous fungi in Brazil. Fungal Divers 9:15–45

    Google Scholar 

  • Arcadia L, Knudsen K (2012) The name Myriospora is available for the Acarospora smaragdula group. Opuscula Philolich 11:19–25

    Google Scholar 

  • Bendiksby M, Timdal E (2013) Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62:940–956

    Article  Google Scholar 

  • Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinf 7:88

    Article  Google Scholar 

  • Brusse F (1988) Lithoglypha, a new lichen genus from Clarens Sandstone. Bothalia 18:89–96

    Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanine: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Crewe AT, Purvis OW, Wedin M (2006) Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis. Mycol Res 110:521–526

    Article  CAS  PubMed  Google Scholar 

  • Ekman S, Andersen HL, Wedin M (2008) The limitation of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (Lichenized Ascomycota). Syst Biol 57:141–156

    Article  CAS  PubMed  Google Scholar 

  • Ekman S, Wedin M, Lindblom L, Jørgensen PM (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). Lichenologist 46:627–656

    Article  Google Scholar 

  • Eriksson OE, Hawksworth DL (1991) Outline of the ascomycetes—1990. Syst Asc 9:39–271

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

  • Gauslaa Y, Solhaug KA (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia 126:462–471

    Article  Google Scholar 

  • Goloboff P, Farris J, Nixon K (2008) TNT a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Gueidan C, Monnat J-Y, Navarro-Rosines P, Roux C (2014) Trimmatothelopsis versipellis—Découverte de stations dans le Finistére (France), position phylogénétique et consequences taxonomiques. Bull Soc linn Provence 65:47–65

    Google Scholar 

  • Hafellner J (1993) Acarospora und Pleopsidium—zwei lichenisierte Ascomycetengattungen (Lecanorales) mit zahlreichen Konvergenzen. Nova Hedwigia 56:281–305

    Google Scholar 

  • Hafellner J (1995) Towards a better circumscription of the Acarosporaceae (lichenized Ascomycotina Lecanorales). Cryptogam Bot 5:99–104

    Google Scholar 

  • Hafellner J, Casares-Porcel M (1992) Untersuchungen an den Typusarten der lichenisierten Ascomycetengattungen Acarospora und Biatorella und die daraus entstehenden Konsequenzen. Nova Hedwigia 55:309–323

    Google Scholar 

  • Hafellner J, Türk R (2001) Die lichenisierten Pilze Österreichs—eine Checkliste der bisher nachgewiesenen Arten mit verbreitungsangaben. Stapfia 76:1–167

    Google Scholar 

  • Hauck M, Dulamsuren C, Mühlenberg M (2007) Lichen diversity on steppe slopes in the northern Mongolian mountain taiga and its dependence on microclimate. Flora 202:530–546

    Article  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Syst Biol 42:182–192

    Article  Google Scholar 

  • Huelsenbeck JP, Bollback JP (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 50:351–366

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:131–158

    Article  PubMed  Google Scholar 

  • Jian S, Soltis PS, Gitzendanner MA, Moore MJ, Li R, Hendry TA, Qiu Y-L, Dhingra A, Bell CD, Soltis DE (2008) Resolving an ancient rapid radiation in Saxifragales. Syst Biol 57:38–57

    Article  CAS  PubMed  Google Scholar 

  • Kantvilas G (1998) Notes on Polysporina Vězda with a description of a new species from Tasmania. Lichenologist 30:551–562

    Google Scholar 

  • Kantvilas G, Seppelt RD (2006) Polysporina frigida sp. nov. from Antarctica. Lichenologist 38:109–113

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Katoh K, Toh H (2008a) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008b) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinf 9:212

    Article  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knudsen K (2007a) Acarospora. In: Nash TH III, Gries C, Bungartz F (eds) Lichen Flora of the Greater Sonoran Desert Region, vol 3. Arizona State University, Tempe, Lichens Unlimited, pp 1–38

    Google Scholar 

  • Knudsen K (2007b) P. In: Nash TH III, Gries C, Bungartz F (eds) Lichen Flora of the Greater Sonoran Desert Region, vol 3. Arizona State University, Tempe, Lichens Unlimited, pp 276–278

    Google Scholar 

  • Knudsen K, Etayo J (2009) Sarcogyne algerica H. Magn., new to Europe. Opuscula Philolich 7:61–64

    Google Scholar 

  • Knudsen K, Flakus A (2009) Acarospora ramosa (Acarosporaceae), a new effigurate yellow species from South America. Nova Hedwigia 89:349–353

    Article  Google Scholar 

  • Knudsen K, Fox HF (2010) Acarospora benedarensis: a rare terricolous maritime lichen from Ireland, Scotland, and Wales. Opuscula Philolich 9:31–34

    Google Scholar 

  • Knudsen K, Kocourková J (2008) A study of lichenicolous species of Polysporina (Acarosporaceae). Mycotaxon 105:149–164

    Google Scholar 

  • Knudsen K, Kocourková J (2010) Lichenological notes #1: Acarosporaceae. Mycotaxon 112:361–366

    Article  Google Scholar 

  • Knudsen K, Standley SM (2007) Sarcogyne. In: Nash TH III, Gries C, Bungartz F (eds) Lichen Flora of the Greater Sonoran Desert Region, vol 3. Arizona State University, Tempe, Lichens Unlimited, pp 289–296

    Google Scholar 

  • Knudsen K, Lendemer JC, Harris RC (2010) Studies in lichens and lichenicolous fungi – no 15: miscellaneous notes on species from eastern North America. Opuscula Philolich 9:45–75

    Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO, Holder MT, Holsinger KE (2005) Polytomies and Bayesian phylogenetic inference. Syst Biol 54:241–253

    Article  PubMed  Google Scholar 

  • Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50:59–72

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org. Accessed 23 July 2014

  • Magnusson AH (1924) A monograph of the Scandinavian species of the genus Acarospora. Göteborgs Kungl Vetensk Samhälles Handl ser 4(28):1–150

    Google Scholar 

  • Magnusson AH (1929) A monograph of the genus Acarospora. Kungl Svenska Vetenskapsakad Handl ser 3(7):1–400

    Google Scholar 

  • Magnusson AH (1935) Acarosporaceae. Thelocarpaceae Rabenh Krypt-Fl 9 5:1–318

    Google Scholar 

  • McLean J, Purvis OW, Williamson BJ, Bailey EH (1998) Role for lichen melanins in uranium remediation. Nature 391:649–650

    Article  CAS  Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch C, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Myllys L, Lohtander K, Tehler A (2001) β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93:335–343

    Article  CAS  Google Scholar 

  • Navarro-Rosinés P, Roux C, Bellemère A (1999) Thelocarpella gordensis gen. et sp. nov. (Ascomycetes lichenisati, Acarosporaceae). Can J Bot 77:835–842

    Google Scholar 

  • Nybakken L, Solhag KA, Bilger W, Gauslaa Y (2004) The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140:211–216

    Article  PubMed  Google Scholar 

  • Otálora MAG, Aragón G, Martínez I, Wedin M (2013) Cardinal characters on a slippery slope – a re-evaluation of phylogeny character evolution and evolutionary rates in the jelly lichens (Collemataceae s.str.). Mol Phylogenet Evol 68:185–198

    Article  PubMed  Google Scholar 

  • Otálora MAG, Jørgensen PM, Wedin M (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Divers 64:275–293

    Article  Google Scholar 

  • Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov Chain Monte Carlo. Am Nat 167:808–825

    Article  PubMed  Google Scholar 

  • Pagel M, Meade A (2007) BayesTraits Version 1.0 Computer Package. Software. http://www.evolution.reading.ac.uk/BayesTraits.html. Accessed 23 July 2014

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral states on phylogenies. Syst Biol 53:673–684

    Article  PubMed  Google Scholar 

  • Poelt J (1974) Systematik der Flechten. Bericht über die Jahre 1972 und 1973 mit einigen Nachtragen. Progr Bot 36:263–276

    Article  Google Scholar 

  • Poelt J, Vezda A (1981) Bestimmungsschlüssel europäischer Flechten. Erganzungsheft II. Bibl Lichenol 16, J. Cramer, Vaduz. 390 pp

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS One 8(6) doi:10.1371/journal.pone.0065576

  • Purvis OW, Bailey EH, McLean J, Kasama T, Williamson BJ (2004) Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiol J 21:159–167

    Article  CAS  Google Scholar 

  • Reeb V, Lutzoni F, Roux C (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina Fungi) with special emphasis on the lichen–forming Acarosporaceae and evolution of polyspory. Mol Phylogenet Evol 32:1036–1060

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4:1–239

    Google Scholar 

  • Ronquist F (2004) Bayesian inference of character evolution. Trends Ecol Evol 19:475–481

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck J, Teslenko M (2011) Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. http://mrbayes.sourceforge.net/mb3.2_manual.pdf. Accessed 23 July 2014

  • Ronquist F, Teslenko M, van derMark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:1–4

    Article  Google Scholar 

  • Rothfels CJ, Larsson A, Kuo L-Y, Korall P, Chiou W-L, Prymer K-M (2012) Overcoming deep roots fast rates and short internodes to resolve the ancient rapid radiation of eupolypoid II ferns. Syst Biol 61:490–509

    Article  PubMed  Google Scholar 

  • Schoch C, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny B, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JC, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister D, Peterson K, Gryzenhout M, Winngfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman A, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker R, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schultz T, Churchill G (1999) The role of subjectivity in reconstructing ancestral character states: a Bayesian approach to unknown rates states and transformation asymmetries. Syst Biol 48:651–664

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2002) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    Article  Google Scholar 

  • Spribille T, Muggia L (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota). Fungal Divers 58:171–184

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85:1548–1559

    Article  CAS  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577

    Article  CAS  PubMed  Google Scholar 

  • Tehler A (1988) A cladistic outline of the Eumycota. Cladistics 4:227–277 

  • Vězda A (1978) Neue oder wenig bekannte Flechten in der Tschechoslowakei. II. Folia Geobot Phytotax 13:397–4020

    Google Scholar 

  • von Flotow J (1851) Über Psora privigna (Ach.) Fw. 1848. Bot Ztg (Berlin) 9:753–759

    Google Scholar 

  • Wedin M, Döring H, Gilenstam G (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol 164:459–465

    Article  Google Scholar 

  • Wedin M, Wiklund E, Crewe A, Döring H, Ekman S, Nyberg A, Schmitt I, Lumbsch HT (2005) Phylogenetic relationships of Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycol Res 109:159–172

    Article  CAS  PubMed  Google Scholar 

  • Wedin M, Westberg M, Crewe AT, Tehler A, Purvis OW (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota Fungi) complex. Cladistics 25:161–172

    Article  Google Scholar 

  • Westberg M, Crewe AT, Purvis OW, Wedin M (2010[“2011”]) Silobia, a new genus for the Acarospora smaragdula complex (Ascomycota Acarosporales) and a revision of the group in Sweden. Lichenologist 43:7–25

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols. Academic Press, San Diego, pp 315–322

  • Yang Z (2008) Empirical evaluation of a prior for Bayesian phylogenetic inference. Philos Trans R Soc Lond B Biol Sci 363:4031–4039

    Article  PubMed Central  PubMed  Google Scholar 

  • Zahlbruckner A (1907) Lichenes, spezieller Teil. In Engler A, Prantl K. Die natürlichen Pflanzenfamilien I. Teil 1. Abteilung 49–249

  • Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31:511–516

Download references

Acknowledgments

This study was funded by grants to Martin Westberg by The Swedish Taxonomy Initiative (Svenska Artprojektet, administered by the Swedish Species Information Centre/ArtDatabanken) and was further supported by grants to Mats Wedin from the Swedish Research Council (VR 621-2009-5372, VR 621-2012-3990). The work of Kerry Knudsen was financially supported by the grant “Environmental aspects of sustainable development of society” 42900/1312/3166 from the Faculty of Environmental Sciences, Czech University of Life Sciences Prague. We are grateful to the staff at the Molecular Systematics Laboratory at the Swedish Museum of Natural History for laboratory assistance, in particular Jan Ohlson and Bodil Cronholm. Valerie Reeb kindly shared unpublished details from on her work on Acarosporaceae. The first author would finally like to thank Ulf Arup (LD), Philippe Clerc (G), Leif Tibell (UPS), Toni Berglund (Karlskoga) and members of the Swedish Lichen Society for assistance during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Westberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Tab. 1

(DOC 177 kb)

Suppl. Tab. 2

(DOC 49 kb)

Suppl. Tab. 3

(DOC 37 kb)

Suppl. Fig 1

Maximum likelihood best tree from the ITS dataset. Bootstrap values ≥ 70% –using 1000 Bootstrap replicates – are indicated over branches. Branch lengths are scaled to the expected number of nucleotide substitutions per site. (PDF 299 kb)

Suppl. Fig 2

Maximum likelihood best tree from the nSLU dataset. Bootstrap values ≥ 70% –using 1000 Bootstrap replicates – are indicated over branches. Branch lengths are scaled to the expected number of nucleotide substitutions per site. (PDF 268 kb)

Suppl. Fig 3

Maximum likelihood best tree from the mtSSU dataset. Bootstrap values ≥ 70% –using 1000 Bootstrap replicates – are indicated over branches. Branch lengths are scaled to the expected number of nucleotide substitutions per site. (PDF 268 kb)

Suppl. Fig 4

Maximum likelihood best tree from the BT dataset. Bootstrap values ≥ 70% –using 1000 Bootstrap replicates – are indicated over branches. Branch lengths are scaled to the expected number of nucleotide substitutions per site. (PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westberg, M., Millanes, A.M., Knudsen, K. et al. Phylogeny of the Acarosporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascomata. Fungal Diversity 73, 145–158 (2015). https://doi.org/10.1007/s13225-015-0325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-015-0325-x

Keywords

Navigation