Skip to main content
Log in

Development of Gut-Mucus Chip for Intestinal Absorption Study

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The intestinal epithelium is a major barrier through which orally administered drugs must pass. The intestinal mucosa on the epithelium acts as an additional barrier that protects the intestinal cells from foreign substances, thereby interfering with drug delivery. Caco-2 based cell culture model is a standard in vitro model system for testing drug uptake. However, current in vitro models do not reflect the absorption mechanism of drugs accurately due to the absence of the mucus layer. Here, we developed a microfluidic gut-mucus chip using Caco-2 cells coated with mucin protein. It was confirmed that the mucin layer was maintained under flow conditions by Alcian blue/Periodic Acid Schiff (PAS) staining. In addition, the effect of mucosal layer on drug absorption in the flow environment was examined. Mucus-adhesive particles can be useful for delivery of drugs across the intestinal epithelium. We prepared mucus-adhesive and non-adhesive microparticles containing fluorescent molecules and compared the adhesion of these particles in flow condition. Mucus-coated Caco-2 cells provide a more physiologically realistic intestinal epithelial environment to study uptake processes of drugs released from the mucus-adhesive particles. We hope that the gut-mucus chip could potentially be used as novel and more accurate in vitro models of the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Cote, B., Rao, D., Alani, A.W.G.: Nanomedicine for drug delivery throughout the alimentary canal. Mol. Pharm. (2021). https://doi.org/10.1021/acs.molpharmaceut.0c00694

    Article  PubMed  Google Scholar 

  2. Kwon, O., Jung, K.B., Lee, K.R., Son, Y.S., Lee, H., Kim, J.J., Kim, K., Lee, S., Song, Y.K., Jung, J., et al.: The development of a functional human small intestinal epithelium model for drug absorption. Sci. Adv. (2021). https://doi.org/10.1126/sciadv.abh1586

    Article  PubMed  PubMed Central  Google Scholar 

  3. Paone, P., Cani, P.D.: Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020). https://doi.org/10.1136/gutjnl-2020-322260

    Article  CAS  PubMed  Google Scholar 

  4. Boegh, M., Nielsen, H.M.: Mucus as a barrier to drug delivery—understanding and mimicking the barrier properties. Basic Clin. Pharmacol. Taxicol. 116, 179–186 (2015). https://doi.org/10.1111/bcpt.12342

    Article  CAS  Google Scholar 

  5. Greek, R., Menache, A.: Systematic reviews of animal models: methodology versus epistemology. Int. J. Med. Sci. 10, 206–221 (2013). https://doi.org/10.7150/ijms.5529

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fedi, A., Vitale, C., Ponschin, G., Ayehunie, S., Fato, M., Scaglione, S.: In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: a systematic review. J. Control. Release 335, 247–268 (2021). https://doi.org/10.1016/j.jconrel.2021.05.028

    Article  CAS  PubMed  Google Scholar 

  7. Akbari, A., Lavasanifar, A., Wu, J.: Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Acta Biomater. 64, 249–258 (2017). https://doi.org/10.1016/j.actbio.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  8. Lock, J.Y., Carlson, T.L., Carrier, R.L.: Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev. 124, 34–49 (2018). https://doi.org/10.1016/j.addr.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Boegh, M., Nielsen, H.M.: Mucus as a barrier to drug delivery - understanding and mimicking the barrier properties. Basic Clin. Pharmacol. Toxicol. 116, 179–186 (2015). https://doi.org/10.1111/bcpt.12342

    Article  CAS  PubMed  Google Scholar 

  10. Kim, J., Kim, S., Uddin, S., Lee, S.S., Park, S.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. BioChip J. 16, 366–375 (2022). https://doi.org/10.1007/s13206-022-00073-0

    Article  CAS  Google Scholar 

  11. Sardelli, L., Pacheco, D.P., Ziccarelli, A., Tunesi, M., Caspani, O., Fusari, A., BriaticoVangosa, F., Giordano, C., Petrini, P.: Towards bioinspired in vitro models of intestinal mucus. RSC Adv. 9, 15887–15899 (2019). https://doi.org/10.1039/C9RA02368B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boegh, M., Baldursdottir, S.G., Mullertz, A., Nielsen, H.M.: Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur. J. Pharm. Biopharm. 87, 227–235 (2014). https://doi.org/10.1016/j.ejpb.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Kararli, T.T.: Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug. Dispos. 16, 351–380 (1995). https://doi.org/10.1002/bdd.2510160502

    Article  CAS  PubMed  Google Scholar 

  14. Larhed, A.W., Artursson, P., Grasjo, J., Bjork, E.: Diffusion of drugs in native and purified gastrointestinal mucus. J. Pharm. Sci. 86, 660–665 (1997). https://doi.org/10.1021/js960503w

    Article  CAS  PubMed  Google Scholar 

  15. Mahler, G.J., Shuler, M.L., Glahn, R.P.: Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem. 20, 494–502 (2009). https://doi.org/10.1016/j.jnutbio.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  16. Lesuffleur, T., Porchet, N., Aubert, J.P., Swallow, D., Gum, J.R., Kim, Y.S., Real, F.X., Zweibaum, A.: Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J. Cell. Sci. 106(Pt 3), 771–783 (1993)

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Q., Liu, J., Wang, X., Feng, L., Wu, J., Zhu, X., Wen, W., Gong, X.: Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online 19, 9 (2020). https://doi.org/10.1186/s12938-020-0752-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sung, J.H., Koo, J., Shuler, M.L.: Mimicking the human physiology with microphysiological systems (MPS). BioChip J. 13, 115–126 (2019). https://doi.org/10.1007/s13206-019-3201-z

    Article  CAS  Google Scholar 

  19. Driver, R., Mishra, S.: Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-on-chip. BioChip J. (2022). https://doi.org/10.1007/s13206-022-00087-8

    Article  Google Scholar 

  20. Tran, T.T.T., Delgado, A., Jeong, S.: Organ-on-a-chip: the future of therapeutic aptamer research? BioChip J. 15, 109–122 (2021). https://doi.org/10.1007/s13206-021-00016-1

    Article  CAS  Google Scholar 

  21. Sung, J.H., Wang, Y.I., Narasimhan Sriram, N., Jackson, M., Long, C., Hickman, J.J., Shuler, M.L.: Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351 (2019). https://doi.org/10.1021/acs.analchem.8b05293

    Article  CAS  PubMed  Google Scholar 

  22. Bein, A., Shin, W., Jalili-Firoozinezhad, S., Park, M.H., Sontheimer-Phelps, A., Tovaglieri, A., Chalkiadaki, A., Kim, H.J., Ingber, D.E.: Microfluidic organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5, 659–668 (2018). https://doi.org/10.1016/j.jcmgh.2017.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim, H.J., Ingber, D.E.: Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb) 5, 1130–1140 (2013). https://doi.org/10.1039/c3ib40126j

    Article  CAS  PubMed  Google Scholar 

  24. Chi, M., Yi, B., Oh, S., Park, D.J., Sung, J.H., Park, S.: A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed. Microdevices 17, 9966 (2015). https://doi.org/10.1007/s10544-015-9966-5

    Article  CAS  PubMed  Google Scholar 

  25. Shim, K.Y., Lee, D., Han, J., Nguyen, N.T., Park, S., Sung, J.H.: Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19, 37 (2017). https://doi.org/10.1007/s10544-017-0179-y

    Article  CAS  PubMed  Google Scholar 

  26. Gao, D., Liu, H., Lin, J.M., Wang, Y., Jiang, Y.: Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13, 978–985 (2013). https://doi.org/10.1039/c2lc41215b

    Article  CAS  PubMed  Google Scholar 

  27. Pocock, K., Delon, L., Bala, V., Rao, S., Priest, C., Prestidge, C., Thierry, B.: Intestine-on-a-chip microfluidic model for efficient in vitro screening of oral chemotherapeutic uptake. ACS Biomater. Sci. Eng. 3, 951–959 (2017). https://doi.org/10.1021/acsbiomaterials.7b00023

    Article  CAS  PubMed  Google Scholar 

  28. Guo, Y., Li, Z., Su, W., Wang, L., Zhu, Y., Qin, J.: A biomimetic human gut-on-a-chip for modeling drug metabolism in intestine. Artif. Organs 42, 1196–1205 (2018). https://doi.org/10.1111/aor.13163

    Article  CAS  PubMed  Google Scholar 

  29. Ensign, L.M., Cone, R., Hanes, J.: Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012). https://doi.org/10.1016/j.addr.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  30. Yang, J., Cho, G., Lee, T.-G., Kim, B.: pH-responsive hydrogel microparticles as intelligent delivery carriers for α-MSH antagonists. AlChE J. 57, 1919–1925 (2011). https://doi.org/10.1002/aic.12407

    Article  CAS  Google Scholar 

  31. Chaturvedi, K., Ganguly, K., Nadagouda, M.N., Aminabhavi, T.M.: Polymeric hydrogels for oral insulin delivery. J. Control. Release 165, 129–138 (2013). https://doi.org/10.1016/j.jconrel.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y., Yang, Z., Hu, X., Zhang, L., Li, F., Li, M., Tang, X., Xiao, W.: Development and evaluation of mucoadhesive nanoparticles based on thiolated Eudragit for oral delivery of protein drugs. J. Nanoparticle Res. 17, 98 (2015). https://doi.org/10.1007/s11051-015-2909-5

    Article  CAS  Google Scholar 

  33. Dolinina, E.S., Akimsheva, E.Y., Parfenyuk, E.V.: Silica microcapsules as containers for protein drugs: direct and indirect encapsulation. J. Mol. Liq. 287, 110938 (2019). https://doi.org/10.1016/j.molliq.2019.110938

    Article  CAS  Google Scholar 

  34. Ng, L.-T., Swami, S.: Copolymers of acrylic acid with N-vinylpyrrolidinone and 2-hydroxyethyl methacrylate as pH-responsive hydrogels synthesized through a photoinitiator-free photopolymerization technique. Polym. Int. J. 55, 535–544 (2006)

    Article  CAS  Google Scholar 

  35. Kim, B., Lim, S.H., Ryoo, W.: Preparation and characterization of pH-sensitive anionic hydrogel microparticles for oral protein-delivery applications. J. Biomater. Sci. Polym. Ed. 20, 427–436 (2009). https://doi.org/10.1163/156856209X416458

    Article  CAS  PubMed  Google Scholar 

  36. Lee, E., Kim, B.: Preparation and characterization of pH-sensitive hydrogel microparticles as a biological on–off switch. Polym. Bull. 67, 67–76 (2011). https://doi.org/10.1007/s00289-010-0403-x

    Article  CAS  Google Scholar 

  37. Saunders, J.R., Moussa, W.: Dynamic mechanical properties and swelling of UV-photopolymerized anionic hydrogels. J. Polym. Sci. Part B. 50, 1198–1208 (2012). https://doi.org/10.1002/polb.23114

    Article  CAS  Google Scholar 

  38. Xiang, T., Lu, T., Zhao, W.F., Zhao, C.S.: Ionic-strength responsive zwitterionic copolymer hydrogels with tunable swelling and adsorption behaviors. Langmuir 35, 1146–1155 (2019). https://doi.org/10.1021/acs.langmuir.8b01719

    Article  CAS  PubMed  Google Scholar 

  39. Wang, J., Tabata, Y., Bi, D., Morimoto, K.: Evaluation of gastric mucoadhesive properties of aminated gelatin microspheres. J. Control. Release 73, 223–231 (2001). https://doi.org/10.1016/s0168-3659(01)00288-7

    Article  CAS  PubMed  Google Scholar 

  40. Aduba, D.C., Jr., Hammer, J.A., Yuan, Q., Yeudall, W.A., Bowlin, G.L., Yang, H.: Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomater. 9, 6576–6584 (2013). https://doi.org/10.1016/j.actbio.2013.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rohrer, J., Partenhauser, A., Zupančič, O., Leonavičiūtė, G., Podričnik, S., Bernkop-Schnürch, A.J.E.P.J.: Thiolated gelatin films: renaissance of gelatin as sustained intraoral dosage form. Eur. Polym. J. 87, 48–59 (2017)

    Article  CAS  Google Scholar 

  42. Ofokansi, K.C., Adikwu, M.U., Okore, V.C.: Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium. Drug Dev. Ind. Pharm. 33, 691–700 (2007). https://doi.org/10.1080/03639040701360876

    Article  CAS  PubMed  Google Scholar 

  43. Lee, S.Y., Sung, J.H.: Gut-liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol. Bioeng. 115, 2817–2827 (2018). https://doi.org/10.1002/bit.26793

    Article  CAS  PubMed  Google Scholar 

  44. Yi, B., Shim, K.Y., Ha, S.K., Han, J., Hoang, H.-H., Choi, I., Park, S., Sung, J.H.: Three-dimensional in vitro gut model on a villi-shaped collagen scaffold. BioChip J. 11, 219–231 (2017). https://doi.org/10.1007/s13206-017-1307-8

    Article  CAS  Google Scholar 

  45. Oh, J., Kim, B.: Mucoadhesive and pH-responsive behavior of gelatin containing hydrogels for protein drug delivery applications. Korea-Australia Rheol. J. 32, 41–46 (2020). https://doi.org/10.1007/s13367-020-0005-6

    Article  Google Scholar 

  46. Gijzen, L., Marescotti, D., Raineri, E., Nicolas, A., Lanz, H.L., Guerrera, D., van Vught, R., Joore, J., Vulto, P., Peitsch, M.C., et al.: An Intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technol. 25, 585–597 (2020). https://doi.org/10.1177/2472630320924999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, H.J., Huh, D., Hamilton, G., Ingber, D.E.: Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012). https://doi.org/10.1039/c2lc40074j

    Article  CAS  PubMed  Google Scholar 

  48. Strugala, V., Allen, A., Dettmar, P.W., Pearson, J.P.: Colonic mucin: methods of measuring mucus thickness. Proc. Nutr. Soc. 62, 237–243 (2003). https://doi.org/10.1079/pns2002205

    Article  CAS  PubMed  Google Scholar 

  49. Yim, D.S., Choi, S., Bae, S.H.: Predicting human pharmacokinetics from preclinical data: absorption. Transl. Clin. Pharmacol. 28, 126–135 (2020). https://doi.org/10.12793/tcp.2020.28.e14

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pisapia, F., Balachandran, W., Rasekh, M.: Organ-on-a-chip: design and simulation of various microfluidic channel geometries for the influence of fluid dynamic parameters. Appl. Sci. 12, 3829 (2022)

    Article  CAS  Google Scholar 

  51. Cornick, S., Tawiah, A., Chadee, K.: Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3, e982426 (2015). https://doi.org/10.4161/21688370.2014.982426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giannoudaki, E., Hernandez-Santana, Y.E., Mulfaul, K., Doyle, S.L., Hams, E., Fallon, P.G., Mat, A., O’Shea, D., Kopf, M., Hogan, A.E., et al.: Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nat. Commun. 10, 4003 (2019). https://doi.org/10.1038/s41467-019-11944-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N., Khademhosseini, A.: Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015). https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rekowska, N., Teske, M., Arbeiter, D., Brietzke, A., Konasch, J., Riess, A., Mau, R., Eickner, T., Seitz, H., Grabow, N.: Biocompatibility and thermodynamic properties of PEGDA and two of its copolymer. Annu. In.t Conf. IEEE Eng. Med. Biol. Soc. 2019, 1093–1096 (2019). https://doi.org/10.1109/EMBC.2019.8857503

    Article  CAS  Google Scholar 

  55. Mackiewicz, M., Stojek, Z., Karbarz, M.: Synthesis of cross-linked poly(acrylic acid) nanogels in an aqueous environment using precipitation polymerization: unusually high volume change. R Soc. Open Sci. 6, 190981 (2019). https://doi.org/10.1098/rsos.190981

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mansuri, S., Kesharwani, P., Jain, K., Tekade, R.K., Jain, N.K.: Mucoadhesion: a promising approach in drug delivery system. React. Funct. Polym. 100, 151–172 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.01.011

    Article  CAS  Google Scholar 

  57. Fine, K.D., Santa Ana, C.A., Porter, J.L., Fordtran, J.S.: Effect of changing intestinal flow rate on a measurement of intestinal permeability. Gastroenterology 108, 983–989 (1995). https://doi.org/10.1016/0016-5085(95)90193-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Technology development Program of Korea Technology and Information Promotion Agency (S3251721, S3316767), National Research Foundation of Korea (Basic Research Lab, 2022R1A4A2000748) and Bio & Medical Technology Development Program, 2022M3A9B6018217), and by the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea, under the Technology Innovation Program, Grant 20008414 (Development of intestine-liver-kidney multiorgan tissue chip mimicking absorption distribution metabolism excretion of drug), and by the Hongik University Research Fund and 2022 Hongik University Innovation Support Program Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hwan Sung.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y., Lee, Y., Choi, N. et al. Development of Gut-Mucus Chip for Intestinal Absorption Study. BioChip J 17, 230–243 (2023). https://doi.org/10.1007/s13206-023-00097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00097-0

Keywords

Navigation