Skip to main content
Log in

Customized Multilayered Tissue-on-a-Chip (MToC) to Simulate Bacillus Calmette–Guérin (BCG) Immunotherapy for Bladder Cancer Treatment

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

As an advanced cell culture platform, the organ-on-a-chip has been in the spotlight recently owing to its ability to maintain the physiological characteristics of cells in vitro. Therefore, several disease models have been developed using the organ-on-a-chip technology, and the organ specific three-dimensional (3D) structure and various mechanical/chemical stimuli built into the chip enable efficient development of drugs, medical devices, and biomaterials, as well as realization of patient-specific precise medicine. This study introduces a novel chip-based non-muscle invasive bladder cancer model, multilayered tissue-on-a-chip (MToC), which was created using 3D bio-printing technology, micro-milling, and soft lithography based polydimethylsiloxane (PDMS) casting. All types of cells, T24, MRC-5, and HUVEC, were successfully co-cultured in the MToC. Using computational fluid dynamics (CFD), the flow phenomena occurring in MToC were analyzed. Further, we attempted Bacillus Calmette–Guérin (BCG)-induced migration of THP-1, and the viability reduction of bladder cancer cells and the THP-1 migration were observed. Although follow-up studies are needed to precisely mimic the immune response, this partial phenomenon of the immune response suggests the potential of this device as a surrogate experimental tool for BCG immunotherapy in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, G.H., et al.: Networked concave microwell arrays for constructing 3D cell spheroids. Biofabrication 10, 015001 (2017)

    Article  Google Scholar 

  2. Park, S.E., Georgescu, A., Huh, D.: Organoids-on-a-chip. Science 364, 960–965 (2019)

    Article  CAS  Google Scholar 

  3. Kashaninejad, N., et al.: Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 7, 130 (2016)

    Article  Google Scholar 

  4. Liu, Y., et al.: Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. Lab Chip 19, 241–253 (2019)

    Article  CAS  Google Scholar 

  5. Tao, T., et al.: Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 19, 948–958 (2019)

    Article  CAS  Google Scholar 

  6. Bulutoglu, B., et al.: A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip 19, 3022–3031 (2019)

    Article  CAS  Google Scholar 

  7. Lasli, S., et al.: A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease. Adv. Biosyst. 3, 1900104 (2019)

    Article  Google Scholar 

  8. McCain, M.L., Sheehy, S.P., Grosberg, A., Goss, J.A., Parker, K.K.: Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. USA 110, 9770–9775 (2013)

    Article  CAS  Google Scholar 

  9. Villenave, R., et al.: Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS One 12, e0169412 (2017)

    Article  Google Scholar 

  10. Van Den Berg, A., Mummery, C.L., Passier, R., Van der Meer, A.D.: Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19, 198–205 (2019)

    Article  Google Scholar 

  11. Sievert, K.D., et al.: Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295–300 (2009)

    Article  CAS  Google Scholar 

  12. Kamat, A.M., et al.: Bladder cancer. Lancet 388, 2796–2810 (2016)

    Article  Google Scholar 

  13. Zuiverloon, T.C.M., et al.: Markers predicting response to bacillus Calmette–Guérin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur. Urol. 61, 128–145 (2012)

    Article  Google Scholar 

  14. Andersson, K., McCloskey, K.D.: Lamina propria: the functional center of the bladder? Neurourol. Urodyn. 33, 9–16 (2014)

    Article  Google Scholar 

  15. Kim, J.H., et al.: Establishment of three-dimensional bioprinted bladder cancer-on-a-chip with a microfluidic system using Bacillus Calmette–Guérin. Int. J. Mol. Sci. 22, 8887 (2021)

    Article  CAS  Google Scholar 

  16. Kim, M.J., et al.: Structure establishment of three-dimensional (3D) cell culture printing model for bladder cancer. PLoS One 14, e0223689 (2019)

    Article  CAS  Google Scholar 

  17. Park, J.Y., Yoo, S.J., Hwang, C.M., Lee, S.H.: Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Lab Chip 9, 2194–2202 (2009)

    Article  CAS  Google Scholar 

  18. Swartz, M.A., Fleury, M.E.: Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9, 229–256 (2007)

    Article  CAS  Google Scholar 

  19. Ng, C.P., Helm, C.L.E., Swartz, M.A.: Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68, 258–264 (2004)

    Article  Google Scholar 

  20. Helm, C.L.E., Fleury, M.E., Zisch, A.H., Boschetti, F., Swartz, M.A.: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl. Acad. Sci. USA 102, 15779–15784 (2005)

    Article  CAS  Google Scholar 

  21. Helm, C.L.E., Zisch, A., Swartz, M.A.: Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol. Bioeng. 96, 167–176 (2007)

    Article  CAS  Google Scholar 

  22. Boardman, K.C., Swartz, M.A.: Interstitial flow as a guide for lymphangiogenesis. Circ. Res. 92, 801–808 (2003)

    Article  CAS  Google Scholar 

  23. Semino, C.E., Kamm, R.D., Lauffenburger, D.A.: Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res. 312, 289–298 (2006)

    CAS  PubMed  Google Scholar 

  24. Maroudas, A., Bullough, P.: Permeability of articular cartilage. Nature 219, 1260–1261 (1968)

    Article  CAS  Google Scholar 

  25. Mow, V.C., Holmes, M.H., Michael, L.W.: Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984)

    Article  CAS  Google Scholar 

  26. Sah, R.L., et al.: Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7, 619–636 (1989)

    Article  CAS  Google Scholar 

  27. Grodzinsky, A.J., Levenston, M.E., Jin, M., Frank, E.H.: Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2, 691–713 (2000)

    Article  CAS  Google Scholar 

  28. Ng, C.P., Swartz, M.A.: Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Hear. Circ. Physiol. 284, 1771–1777 (2003)

    Article  Google Scholar 

  29. Ng, C.P., Swartz, M.A.: Mechanisms of interstitial flow-induced remodeling of fibroblast-collagen cultures. Ann. Biomed. Eng. 34, 446–454 (2006)

    Article  Google Scholar 

  30. Wang, S., Tarbell, J.M.: Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model. Arterioscler. Thromb. Vasc. Biol. 20, 2220–2225 (2000)

    Article  CAS  Google Scholar 

  31. Kim, S.H., Ahn, K., Park, J.Y.: Responses of human adipose-derived stem cells to interstitial level of extremely low shear flows regarding differentiation, morphology, and proliferation. Lab Chip 17, 2115–2124 (2017)

    Article  CAS  Google Scholar 

  32. Hsu, Y.-H., Moya, M.L., Hughes, C.C.W., George, S.C., Lee, A.P.: A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13, 2990–2998 (2013)

    Article  CAS  Google Scholar 

  33. Fluent, A.I.: 17.0 ANSYS fluent theory guide. ANSYS Inc, Canonsburg (2016)

    Google Scholar 

  34. Larsen, E.S., Joensen, U.N., Poulsen, A.M., Goletti, D., Johansen, I.S.: Bacillus Calmette–Guérin immunotherapy for bladder cancer: a review of immunological aspects, clinical effects and BCG infections. APMIS 128, 92–103 (2020)

    Article  Google Scholar 

  35. White, F.: Fluid mechanics. McGraw-Hill Higher Education, New York (2015)

    Google Scholar 

  36. Walker-Samuel, S., et al.: Investigating low-velocity fluid flow in tumors with convection-MRI. Cancer Res. 78, 1859–1872 (2018)

    Article  CAS  Google Scholar 

  37. Jackson, A.M., et al.: Changes in urinary cytokines and soluble intercellular adhesion molecule-1 (ICAM-1) in bladder cancer patients after Bacillus Calmette–Guérin (BCG) immunotherapy. Clin. Exp. Immunol. 99, 369–375 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) of the Republic of Korea (NRF-2018R1D1A1A02050248 and NRF-2021R1A2C1004307 to IHC), the Basic Science Research Program (2019R1F1A1062123 to JYP), and the Bio & Medical Technology Development Program (2018M3A9H1023141 to JYP) of the NRF funded by the Korean government, MSIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Yull Park.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, J.H., Kang, S.J. et al. Customized Multilayered Tissue-on-a-Chip (MToC) to Simulate Bacillus Calmette–Guérin (BCG) Immunotherapy for Bladder Cancer Treatment. BioChip J 16, 67–81 (2022). https://doi.org/10.1007/s13206-022-00047-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00047-2

Keywords

Navigation