Skip to main content
Log in

Nanomaterial-modified Hybrid Platforms for Precise Electrochemical Detection of Dopamine

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Dopamine belongs to the class of catecholamine neurotransmitters which have vital roles in the human central nervous system. Due to its importance in signal transmission in the nervous system, the abnormal release of dopamine is critical for the development of a number of neurological diseases/disorders, including Parkinson’s diseases, attention deficit hyperactivity disorder, and even drug addiction. Hence, there is an utmost need to develop platforms for the quantitative detection of dopamine in the human body in a rapid, sensitive, and label-free manner. A variety of nanomaterials have been explored and integrated into dopamine sensing platforms; in particular, electrochemical sensors can enhance both the sensitivity and selectivity toward dopamine, with promising results. The aim of this review is to summarize recent research on nanomaterial-modified dopamine electrochemical sensor platforms, particularly those that use nanoparticle-, graphene composite-, and transition metal dichalcogenide-modified electrodes. The information presented in this review might motivate the discovery or extension of nanomaterials with beneficial properties for the development of biosensors to detect various neurotransmitters including dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Feigin, V.L. et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 16, 877–897 (2017).

    Google Scholar 

  2. Choudhury, A. et al. Neurochemicals, behaviours and psychiatric perspectives of neurological diseases. Neuropsychiatry. 8, 395–424 (2018).

    Google Scholar 

  3. Mittal, R. et al. Neurotransmitters: The critical modulators regulating gut–brain axis. J. Cell. Physiol. 232, 2359–2372 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Paulose, C., K. Amee, and J. Anu. Neurotransmitters functional balance in neurodegenerative disease management: Recent Advances. Sci & Soc. 5(1), 23–30 (2006).

    Google Scholar 

  5. Gao, H.-M. and J.-S. Hong. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends immunol. 29, 357–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kumar, S., B.-S. Kim, and H. Song. An integrated approach of CNT front-end amplifier towards spikes monitoring for Neuro-prosthetic Diagnosis. BioChip J. 12, 332–339 (2018).

    CAS  Google Scholar 

  7. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483 (2004).

    CAS  PubMed  Google Scholar 

  8. Kang, Y.J., E.G. Cutler, and H. Cho. Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg. 5, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Dobryakova, E. et al. The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Front. neurol. 6, 52–52 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Kesby, J.P. et al. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl. Psychiatry. 8, 30 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Segura–Aguilar, J. et al. Protective and toxic roles of dopamine in Parkinson's disease. J. Neurochem. 129, 898–915 (2014).

    PubMed  Google Scholar 

  12. Zhang, X. et al. Highly sensitive and selective detection of dopamine using one-Pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem. 87, 3360–3365 (2015).

    CAS  PubMed  Google Scholar 

  13. Huang, C. et al. Electrogenerated chemiluminescence behavior of peptide nanovesicle and its application in sensing dopamine. Biosens. Bioelectron. 63, 478–482 (2015).

    CAS  PubMed  Google Scholar 

  14. De Benedetto, G.E. et al. A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J. Pharm. Biomed. Anal. 98, 266–270 (2014).

    PubMed  Google Scholar 

  15. Su, H. et al. Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal. Methods. 4, 3981–3986 (2012).

    CAS  Google Scholar 

  16. Chen, Z., C. Zhang, and C. Wang. A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes. Anal. Methods. 7, 838–841 (2015).

    CAS  Google Scholar 

  17. Kim, D.-S. et al. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 8, 14049 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Choo, S.-S. et al. Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors (Basel, Switzerland). 17, 861 (2017).

    PubMed Central  Google Scholar 

  19. Si, B. and E. Song. Recent advances in the detection of neurotransmitters. Chemosensors. 6, 1 (2018).

    Google Scholar 

  20. Jackowska, K. and P. Krysinski. New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405, 3753–3771 (2013).

    CAS  PubMed  Google Scholar 

  21. Bucher, E.S. and R.M. Wightman. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto, Calif.). 8, 239–261 (2015).

    CAS  Google Scholar 

  22. Suhito, I. et al. Nanobiosensing platforms for realtime and non-invasive monitoring of stem cell pluripotency and differentiation. Sensors. 18, 2755 (2018).

    Google Scholar 

  23. Suhito, I.R. et al. Effects of two-dimensional materials on human mesenchymal stem cell behaviors. Biochem. Biophys. Res. Commun. 493, 578–584 (2017).

    CAS  PubMed  Google Scholar 

  24. Hamzah, H.H. et al. 3D printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochem. Commun. 96, 27–31 (2018).

    CAS  Google Scholar 

  25. Zhu, C. et al. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Jiang, K. et al. Rapid and highly sensitive detection of dopamine using conjugated oxaborole-based Polymer and Glycopolymer Systems. ACS Appl. Mater. Interfaces. 9, 15225–15231 (2017).

    CAS  PubMed  Google Scholar 

  27. Al-Graiti, W. et al. Probe sensor using nanostructured multi-walled carbon nanotube yarn for selective and sensitive detection of dopamine. Sensors (Basel, Switzerland). 17, 884 (2017).

    PubMed Central  Google Scholar 

  28. Xu, G. et al. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 107, 184–191 (2018).

    CAS  PubMed  Google Scholar 

  29. Zhou, W.-H. et al. Gold nanoparticles sensitized ZnO nanorods arrays for dopamine electrochemical sensing. J. Electrochem Soc. 165, G3001–G3007 (2018).

    CAS  Google Scholar 

  30. Ramirez, S. et al. Gold nanostructures on self-assembled monolayers activity for epinephrine, noradrenaline and dopamine. J. Electroanal. Chem. 799, 349–357 (2017).

    CAS  Google Scholar 

  31. Zhang, C. et al. Facile fabrication of a 3, 4, 9, 10-perylene tetracarboxylic acid functionalized graphene–multiwalled carbon nanotube–gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine. Analyst. (2018).

    Google Scholar 

  32. Talemi, R.P., S.M. Mousavi, and H. Afruzi. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor. Mater. Sci. Eng. C. 73, 700–708 (2017).

    CAS  Google Scholar 

  33. Taheri, R.A., K. Eskandari, and M. Negahdary. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem. J. 143, 243–251 (2018).

    CAS  Google Scholar 

  34. Sáenz, H.S.C. et al. Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proofof-concept study for the detection of dopamine release by scanning electrochemical microscopy. Microchim. Acta. 185, 367 (2018).

    Google Scholar 

  35. Yang, Z. et al. Synthesis of Au@ Pt nanoflowers supported on graphene oxide for enhanced electrochemical sensing of dopamine. J. Electroanal. Chem. 817, 48–54 (2018).

    CAS  Google Scholar 

  36. Zhang, K. et al. Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid. Talanta. 178, 315–323 (2018).

    CAS  PubMed  Google Scholar 

  37. Hou, Y. et al. Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim. Acta. 185, 397 (2018).

    Google Scholar 

  38. Dasari, B.L. et al. Graphene and derivatives–Synthesis techniques, properties and their energy applications. Energy. 140, 766–778 (2017).

    CAS  Google Scholar 

  39. Bang, K. et al. Effect of ribbon width on electrical transport properties of graphene nanoribbons. Nano Converg. 5, 7 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Garg, R. et al. Deposition methods of graphene as electrode material for organic solar cells. Adv. Energy Mater. 7, 1601393 (2017).

    Google Scholar 

  41. Yang, J.M., K.R. Kim, and C.S. Kim. Biosensor for rapid and sensitive detection of influenza virus. Biotechnol. Bioprocess Eng. 23, 371–382 (2018).

    CAS  Google Scholar 

  42. Karuwan, C. et al. Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal. Methods. 9, 3689–3695 (2017).

    CAS  Google Scholar 

  43. Balaji, A. and J. Zhang. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer nanotechnol. 8, 10–10 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Wu, S. et al. Graphene-based electrochemical sensors. Small. 9, 1160–1172 (2013).

    CAS  PubMed  Google Scholar 

  45. Zhang, C. et al. Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis. 30, 2504–2524 (2018).

    CAS  Google Scholar 

  46. Xuan, X., H.S. Yoon, and J.Y. Park. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109, 75–82 (2018).

    CAS  PubMed  Google Scholar 

  47. Zhang, H.-P. et al. Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials. Mater. Chem. Front. 1, 1156–1164 (2017).

    CAS  Google Scholar 

  48. Raj, M. et al. Graphene/conducting polymer nanocomposite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sens. Actuators B: Chem. 239, 993–1002 (2017).

    CAS  Google Scholar 

  49. Oh, J. et al. Ultrasensitive and selective organic FETtype nonenzymatic dopamine sensor based on platinum nanoparticles-decorated reduced graphene oxide. ACS Appl. Mater. Interfaces. 9, 39526–39533 (2017).

    CAS  PubMed  Google Scholar 

  50. He, Q. et al. Preparation of Cu2O-reduced graphene nanocomposite modified electrodes towards ultrasensitive dopamine detection. Sensors. 18, 199 (2018).

    Google Scholar 

  51. Xu, B. et al. Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sens. Actuators B: Chem. 246, 380–388 (2017).

    CAS  Google Scholar 

  52. Kim, M.-J. et al. 2H-WS2Quantum dots produced by modulating the dimension and phase of 1Tnanosheets for antibody-free optical sensing of neurotransmitters. ACS Appl. Mater. Interfaces. 9, 12316–12323 (2017).

    CAS  PubMed  Google Scholar 

  53. Han, J.H. et al. Recent advances in the solutionbased preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chem. Rev. 118, 6151–6188 (2018).

    CAS  PubMed  Google Scholar 

  54. Thanh, T.D. et al. Recent advances in two-dimensional transition metal dichalcogenides-graphene heterostructured materials for electrochemical applications. Prog. Mater. Sci. 96, 51–85 (2018).

    CAS  Google Scholar 

  55. Ping, J. et al. Recent advances in sensing applications of two–dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27, 1605817 (2017).

    Google Scholar 

  56. Zou, H.L. et al. 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sens. Actuators B: Chem. 253, 352–360 (2017).

    CAS  Google Scholar 

  57. Ma, G. et al. Growth of worm-like and flower-like molybdenum disulfide on graphene nanosheets for sensitive determination of dopamine. Int. J. Electrochem. Sci. 12, 7365–7376 (2017).

    CAS  Google Scholar 

  58. Sakthivel, R. et al. A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 12, 9288–9300 (2017).

    CAS  Google Scholar 

  59. Hun, X. et al. A photoelectrochemical sensor for ultrasensitive dopamine detection based on singlelayer NanoMoS2 modified gold electrode. Sens. Actuators B: Chem. 249, 83–89 (2017).

    Google Scholar 

  60. Vijayaraj, K. et al. One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/ polypyrrole nanocomposite biosensor for the exvivo detection of dopamine in mouse brain tissue. Biochem. Biophys. Res. Commun. 494, 181–187 (2017).

    CAS  PubMed  Google Scholar 

  61. Mani, V., T.-W. Chen, and S. Selvaraj. MWCNTs/ MoS2 decorated cobalt oxide polyhedrons composite film modified electrode for electrochemical determination of dopamine in rat brain and human blood serum samples. Int. J. Electrochem. Sci. 12, 7435–7445 (2017).

    Google Scholar 

  62. Yue, H.Y. et al. Electrochemical determination of dopamine in the presence of uric acid using WS2 nanospheres-carbon nanofibers. J. Electroanal. Chem. 833, 427–432 (2019).

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Research Foundation of Korea (NRF) [Grant No. 2016R1C1B1016088], by the Mid-career Researcher Program [Grant No. 2016R1A2B4014541], and by the Nano Material Technology Development Program (funded by the Korean Government (MSIP) [NRF-2014 M3A7B4051907].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hyung Kim.

Additional information

These authors contributed equally to this work.

Appendices

Conflict of Interests

The authors declare no competing financial interests.

Author’s contributions

I.R.S, N.A and T,-H.K. searched references & collected information. I.R.S. and N.A. produce table, figures, and figure captions. T,- H.K. established the structure of manuscript. All authors wrote and reviewed the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhito, I.R., Angeline, N. & Kim, TH. Nanomaterial-modified Hybrid Platforms for Precise Electrochemical Detection of Dopamine. BioChip J 13, 20–29 (2019). https://doi.org/10.1007/s13206-019-3106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3106-x

Keywords

Navigation