Skip to main content
Log in

An Ultrasensitive FRET-based DNA Sensor via the Accumulated QD System Derivatized in the Nano-beads

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Förster resonance energy transfer (FRET) is extremely sensitive to the separation distance between the donor and the acceptor which is ideal for probing such biological phenomena. Also, FRET-based probes have been developing for detecting an unamplified, low-abundance of target DNA. Here we describe the development of FRET based DNA sensor based on an accumulated QD system for detecting KRAS G12D mutation which is the most common mutation in cancer. The accumulated QD system consists of the polystyrene beads which surface is modified with carboxyl modified QDs. The QDs are sandwich-hybridized with DNA of a capture probe, a reporter probe with Texas-red, and a target DNA by EDC-NHS coupling. Because the carboxyl modified QDs are located closely to each other in the accumulated QDs, these neighboring QDs are enough to transfer the energy to the acceptor dyes. Therefore the FRET factor in the bead system is enhancing by the additional increase of 29.2% as compared to that in a single QD system. These results suggest that the accumulated nanobead probe with conjugated QDs can be used as ultrasensitive DNA nanosensors detecting the mutation in the various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vasan, N., Boyer, J.L. & Herbst, R.S. A RAS Renaissance: Emerging Targeted Therapies for KRAS-Mutated Non-Small Cell Lung Cancer. Clin. Cancer Res. 20, 3921–3930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riely, G.J., Marks, J. & Pao, W. KRAS mutations in non-small cell lung cancer. Proc. Am. Thorac. Soc. 6, 201–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Patolsky, F. et al. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc. 125, 13918–13919 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Medintzi, I.L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2, 630–638 (2003).

    Article  CAS  Google Scholar 

  7. Medintz, I.L. et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U.S.A. 101, 9612–9617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clapp, A.R. et al. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 126, 301–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Bakalova, R., Zhelev, Z., Ohba, H. & Baba, Y., Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences. J. Am. Chem. Soc. 127, 11328–11335 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, D. et al. Fluorescence resonance energy transfer between a quantum dot donor and a dye acceptor attached to DNA. Chem. Commun. 4807–4809 (2005).

    Google Scholar 

  12. Zhang, C. & Johnson, L.W. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Anal. Chem. 78, 5532–5537 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wargnier, R. et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Lett. 4, 451–457 (2004).

    Article  CAS  Google Scholar 

  14. Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281–286 (2001).

    Article  CAS  Google Scholar 

  15. Medintz, I.L., Trammell, S.A., Mattoussi, H. & Mauro, J.M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pons, T., Medintz, I.L., Wang, X., English, D.S. & Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 128, 15324–15331 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Knemeyer, J.P., Marm’e, N. & Sauer, M. Probes for detection of specific DNA sequences at the single-molecule level. Anal. Chem. 72, 3717–3724 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Barnes, M.D., Ng, K.C., Whitten, W.B. & Ramsey, J.M. Detection of single rhodamine-6g molecules in levitated microdroplets. Anal. Chem. 65, 2360–2365 (1993).

    Article  CAS  Google Scholar 

  19. Shera, E.B. et al. Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557 (1990).

    Article  CAS  Google Scholar 

  20. Nie, S.M., Chiu, D.T. & Zare, R.N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Eigen, M. & Rigler, R. Sorting single molecules-application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. U.S.A 91, 5740–5747 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castro, A. & Williams, J.G.K. Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA. Anal. Chem. 69, 3915–3920 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, T.H., Peng, Y.H., Zhang, C.Y., Wong, P.K. & Ho, C.M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J. Am. Chem. Soc. 127, 5354–5359 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, C.Y., Chao, S.Y. & Wang, T.H. Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. Analyst 130, 483–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Wabuyele, M.B. et al. Approaching real-time molecular diagnostics: Single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125, 6937–6945 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Dabbousi, B.O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  27. Leatherdale, C.A., Woo, W.K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  28. Ute, R-G. et al. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    Article  CAS  Google Scholar 

  29. Zhang, C.-Y., Yeh, H.-C., Kuroki, M.T. & Wang, T.-H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, C. & Johnson, L.W. Microfluidic control of fluorescence resonance energy transfer: Breaking the FRET limit, Angew. Chem. Int. Ed. 46, 3482–3485 (2007).

    Article  CAS  Google Scholar 

  31. Yang, L.-H., Ahn, D.J. & Koo, E. Ultrasensitive FRETbased DNA sensor using PNA/DNA hybridization, Mater. Sci. Eng., C 69, 625–630 (2016).

    Article  CAS  Google Scholar 

  32. Bae, W.K. & Lee, S. Single-Step Synthesis of Quantum Dots with Chemical Composition, Gradients. Chem. Mater. 20, 531–539 (2008).

    Article  CAS  Google Scholar 

  33. Clapp, A.R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301–310 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunhae Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LH., Ahn, D.J. & Koo, E. An Ultrasensitive FRET-based DNA Sensor via the Accumulated QD System Derivatized in the Nano-beads. BioChip J 12, 340–347 (2018). https://doi.org/10.1007/s13206-018-2406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2406-x

Keywords

Navigation