Skip to main content
Log in

Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

An ATP bioluminescence assay is frequently in the food industry as a commercially-available bacterial monitoring method because it is convenient and can monitor viable cells in food. However, such an assay suffers from low sensitivity and thus has limitations in monitoring highly pathogenic bacteria. In this study, we describe a method that improves the sensitivity by increasing the amount of ATP that is released from bacterial cells by subjecting the samples to heat treatment. When treated for 10 min at a temperature of 25 to 95°C in phosphate buffered saline (PBS) containing Escherichia coli O157:H7 or Salmonella enteritidis or Bacillus cereus at various concentrations, the relative luminescence unit (RLU) increased several times. Due to signal enhancement, the detection limit (LOD) of the ATP bioluminescence assay improved by about an order of magnitude in milk-containing microorganisms. Our results indicate that the simple heating step on the food samples before measurement is useful to improve the sensitivity of the ATP bioluminescence assay for bacterial detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oliver, S.P., Jayarao, B.M. & Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2, 115–129 (2005).

    Article  CAS  Google Scholar 

  2. Woo, I.-S., Rhee, I.-K. & Park, H.-D. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl. Environ. Microbiol. 66, 2243–2247 (2000).

    Article  CAS  Google Scholar 

  3. CDC. Estimates of foodborne illness in the United States. Internet Address: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html. Accessed Nov (2011).

    Google Scholar 

  4. Thomas, M.K. et al. Estimates of Foodborne Illness-Related Hospitalizations and Deaths in Canada for 30 Specified Pathogens and Unspecified Agents. Foodborne Pathog. Dis. 12, 820–827 (2015).

    Article  Google Scholar 

  5. Hennekinne, J.-A., De Buyser, M.-L. & Dragacci, S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36, 815–836 (2012).

    Article  CAS  Google Scholar 

  6. Kennedy, M. et al. Hospitalizations and deaths due to Salmonella infections, FoodNet, 1996-1999. Clin. Infect. Dis. 38, S142–S148 (2004).

    Article  Google Scholar 

  7. Logan, N. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 112, 417–429 (2012).

    Article  CAS  Google Scholar 

  8. Ayçiçek, H., Aydoğan, H., Küçükkaraaslan, A., Baysallar, M. & Başustaoğlu, A.C. Assessment of the bacterial contamination on hands of hospital food handlers. Food Control 15, 253–259 (2004).

    Article  Google Scholar 

  9. Iqbal, S.S. et al. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15, 549–578 (2000).

    Article  CAS  Google Scholar 

  10. Casas, N., Amarita, F. & de Marañón, I.M. Evaluation of an extracting method for the detection of Hepatitis A virus in shellfish by SYBR-Green real-time RT-PCR. Int. J. Food. Microbiol. 120, 179–185 (2007).

    Article  CAS  Google Scholar 

  11. Desai, P.T., Walsh, M.K. & Weimer, B.C. Solid-phase capture of pathogenic bacteria by using gangliosides and detection with real-time PCR. Appl. Environ. Microbiol. 74, 2254–2258 (2008).

    Article  CAS  Google Scholar 

  12. Kim, J.S. et al. A novel multiplex PCR assay for rapid and simultaneous detection of five pathogenic bacteria: Escherichia coli O157:H7, Salmonella, Staphylococcus aureus, Listeria monocytogenes, and Vibrio parahaemolyticus. J. Food Prot. 70, 1656–1662 (2007).

    Article  CAS  Google Scholar 

  13. Nordstrom, J.L., Vickery, M.C., Blackstone, G.M., Murray, S.L. & DePaola, A. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl. Environ. Microbiol. 73, 5840–5847 (2007).

    Article  CAS  Google Scholar 

  14. Lomakina, G.Y., Modestova, Y.A. & Ugarova, N. Bioluminescence assay for cell viability. Biochemistry 80, 701 (2015).

    CAS  Google Scholar 

  15. Luo, J. et al. Disposable bioluminescence-based biosensor for detection of bacterial count in food. Anal. Biochem. 394, 1–6 (2009).

    Article  CAS  Google Scholar 

  16. Park, C.W., Park, J.-W., Lee, S.H. & Hwang, J. Realtime monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. Biosens. Bioelectron. 52, 379–383 (2014).

    Article  CAS  Google Scholar 

  17. Shinozaki, Y. et al. Evaluation of an improved bioluminescence assay for the detection of bacteria in soy milk. Biocontrol Sci. 18, 1–7 (2013).

    Article  CAS  Google Scholar 

  18. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K. & Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28, 232–254 (2010).

    Article  CAS  Google Scholar 

  19. Lee, S.J., Park, J.S., Im, H.T. & Jung, H.-I. A microfluidic ATP-bioluminescence sensor for the detection of airborne microbes. Sens. Actuator B-Chem. 132, 443–448 (2008).

    Article  CAS  Google Scholar 

  20. Sakakibara, T., Murakami, S. & Imai, K. Enumeration of bacterial cell numbers by amplified firefly bioluminescence without cultivation. Anal. Biochem. 312, 48–56 (2003).

    Article  CAS  Google Scholar 

  21. Satoh, T., Takiguichi, N., Ohtake, H. & Kuroda, A. ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell. Biosci. Biotechnol. Biochem. 68, 1216–1220 (2004).

    Article  CAS  Google Scholar 

  22. Billard, P. & DuBow, M.S. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin. Biochem. 31, 1–14 (1998).

    Article  CAS  Google Scholar 

  23. Champiat, D., Matas, N., Monfort, B. & Fraass, H. Applications of biochemiluminescence to HACCP. Luminescence 16, 193–198 (2001).

    Article  CAS  Google Scholar 

  24. Gonthier, A., Guérin-Faublée, V., Tilly, B. & Delignette-Muller, M.L. Optimal growth temperature of O157 and non-O157 Escherichia coli strains. Lett. Appl. Microbiol. 33, 352–356 (2001).

    Article  CAS  Google Scholar 

  25. Fehlhaber, K. & Krüger, G. The study of Salmonella enteritidis growth kinetics using Rapid Automated Bacterial Impedance Technique. J. Appl. Microbiol. 84, 945–949 (1998).

    Article  CAS  Google Scholar 

  26. Warth, A. Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species. J. Bacteriol. 134, 699–705 (1978).

    CAS  Google Scholar 

  27. Napolitano, M.J. & Shain, D.H. Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9, 93–98 (2005).

    Article  CAS  Google Scholar 

  28. Schneider, D.A. & Gourse, R.L. Relationship between Growth Rate and ATP Concentration in Escherichia coli: a bioassay for available cellular ATP. J. Biol. Chem. 279, 8262–8268 (2004).

    Article  CAS  Google Scholar 

  29. Clarke, A. et al. A low temperature limit for life on Earth. PLoS ONE 8, e66207 (2013).

    Article  CAS  Google Scholar 

  30. Bottari, B., Santarelli, M. & Neviani, E. Determination of microbial load for different beverages and foodstuff by assessment of intracellular ATP. Trends Food Sci. Technol. 44, 36–48 (2015).

    Article  CAS  Google Scholar 

  31. Hattori, N. et al. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal. Biochem. 319, 287–295 (2003).

    Article  CAS  Google Scholar 

  32. Park, C. et al. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 132, 128–133 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Park, C., Kim, Y. et al. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BioChip J 11, 287–293 (2017). https://doi.org/10.1007/s13206-017-1404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-017-1404-8

Keywords

Navigation