Skip to main content
Log in

Development of chitosan based edible films: process optimization using response surface methodology

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Three-factors Box-Behnken design of response surface methodology (RSM) was used to optimize chitosan level (1.5, 2.0, 2.5 %w/v), glycerol level (0.5, 0.75, 1.0 %w/v) and drying temperature (35, 40, 45 °C) for the development of chitosan based edible films. The optimization was done on the basis of different responses viz. thickness, moisture, solubility, colour profile (L*, a*, b* value), penetrability, density, transmittance and water vapor transmission rate (WVTR). The linear effect of chitosan was significant (p < 0.05) on all the responses. However, density was only significantly (p < 0.05) affected by glycerol in a negative linear fashion. Drying temperature also significantly (p < 0.05) affected thickness, penetrability, transmittance and WVTR in linear terms. The quadratic regression coefficient of chitosan showed a significant effect (p < 0.05) on moisture, solubility and WVTR; glycerol level on moisture, L* value and transmittance; and drying temperature on a* value, penetrability, transmittance and WVTR. The effect of interaction of glycerol x temperature as well as chitosan x temperature was also significant (p < 0.05) on a* value and WVTR of edible films. The optimized conditions were: 2.0 % w/v chitosan level, 0.75 % w/v glycerol level and drying temperature 40 °C at a constant time of 48 h. All the response variables were in favourable range including thickness; 108.59 mμ, penetrability; 16.41 N, transmittance; 75.60 %, WVTR; 0.00174 g/m2-t for the optimized edible film. Results concluded that edible films with desirable bio-mechanical properties can be successfully developed and effectively utilized in the food packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10

Similar content being viewed by others

References

  • Arvanitoyannis E, Psomiadoub E, Nakayama A (1996) Edible films made from sodium caseinate, starches, sugers or glycerol. Part I. Carbohydr Polym 31:179–192

    Article  Google Scholar 

  • ASTM (2000) Standard test methods for water vapor transmission of materials. Method E96-00. The Society, West Conshohocken

    Google Scholar 

  • ASTM (2005) Standard test methods for water vapour transmission of materials, methods. 1509: E96. ASTM, Philadelphia

    Google Scholar 

  • Ayranci E, Tunc S (1997) Cellulosed-based edible films and theireffects on fresh beans and strawberries. Z Lebensm UntersForsch A205(6):470–473

    Article  Google Scholar 

  • Bajpai SK, Navin C, Ruchi L (2011) Water vapour permeation and antimicrobial properties of sago starch based films formed via microwave irradiation. Int Food Res J 18:417–426

    CAS  Google Scholar 

  • Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71

    Article  CAS  Google Scholar 

  • Bonilla J, Atarés L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114:303–312

    Article  CAS  Google Scholar 

  • Bourbon AI, Pinheiro AC, Cerqueira MA, Rocha CMR, Avides MC, Quintas MAC, Vicente AA (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106:111–118

    Article  CAS  Google Scholar 

  • Bourtoom T (2008) Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan.Songklanakarin. J Sci Technol 30(1):149–165

    Google Scholar 

  • Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technom 2:455–475

    Article  Google Scholar 

  • Bravin B, Peressini D, Sensidoni A (2006) Development and applicationof polysaccharide-lipid edible coating to extend shelf-lifeof dry bakery products. J Food Eng 76:280–290

    Article  CAS  Google Scholar 

  • Casariego A, Souza BWS, Vicente AA, Teixeira JA, Cruz L, Diaz R (2008) Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation tothe surface properties of tomato and carrot. Food Hydro 22:1452–1459

    Article  CAS  Google Scholar 

  • Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile MA (2008) Influence of glycerol and chitosan on tapioca starch – based edible film properties. J Food Eng 88:159–168

    Article  CAS  Google Scholar 

  • Darmadji P, Izumimoto M (1994) Effect of chitosan in meat preservation. MeatSci 38(2):243–254

    CAS  Google Scholar 

  • Donhowe IG, Fennema O (1993) Water vapor and oxygen permeabilityof wax films. J Am Oil Chem Society 70:867–873

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  • Fundo JF, Quintas MAC, Silva CLM (2008) Influence of film forming solutions on properties of chitosan/glycerol films. Centro de Biotecnologia e Química Fina 21:323–327

    Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58:206–211

    Article  CAS  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Surface Tension and Contact Angle, 3rd edn. Marcel Dekker, Inc., New York, pp 248–255

    Google Scholar 

  • Hosseini MH, Razavi SH, Mousavi SMA, Yasaghi SAS, Hasansaraei AG (2008) Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. J Appl Sci 8(16):2895–2898

    Article  CAS  Google Scholar 

  • Jayakumar R, Nwe NT, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175–181

    Article  CAS  Google Scholar 

  • Kerch G, Korkhov V (2011) Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. Eur Food Res Techn 232:17–22

    Article  CAS  Google Scholar 

  • Krochta M, Johnston CD (1997) Edible and biodegradable polymer films: Challenges and opportunities. Food Technol 51(2):61–74

    Google Scholar 

  • Leceta I, Guerrero P, Caba KDL (2013) Functional properties of chitosan-based films. Carbo Poly 93:339–346

    Article  CAS  Google Scholar 

  • Li B, Kennedy JF, Peng JL, Yie X, Xie BJ (2006) Preparation and performance evaluation of glucomannan-chitosan-nisin ternary antimicrobial blend film. Carbohydr Polym 65(4):488–494

    Article  CAS  Google Scholar 

  • Malmiri JH, Osman A, Tan CP, Abdul-Rahman R (2011) Development of an edible coating based on chitosan-glycerol to delay ‘Berangan’ banana (Musa sapientum cv. Berangan) ripening process. Int Food Res J 18(3):989–997

    CAS  Google Scholar 

  • Manivannan P, Rajasimman M (2011) Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J Food Process Eng 34(3):804–825

    Article  Google Scholar 

  • Mathew S, Abraham TE (2008) Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydro 5(22):826–835

    Article  Google Scholar 

  • Mi FL, Huang CT, Liang HF, Chen MC, Chiu YL, Chen CH (2006) Physicochemical, antimicrobial and cytotoxic characteristics of a chitosan film cross-linked by a naturally occurring cross-linking agent, aglycone geniposidic acid. J Agric Food Chem 54(9):3290–3296

    Article  CAS  Google Scholar 

  • Montgomery DC (2005) Design and Analysis of Experiments, 6th edn. John Wiley and Sons, New York

    Google Scholar 

  • Myllarinen P, Partanen R, Seppala J, Forssell P (2002) Effect of glycerol on behavior of amylose and amylopectin films. Carbohydr Polym 50:355–361

    Article  CAS  Google Scholar 

  • Nussinovitch A, Hershko V (1996) Gellan and alginate vegetable coatings. Carbohydr Polym 30(2–3):185–192

    Article  CAS  Google Scholar 

  • Ozdemir M, Floros JD (2001) Analysis and modeling of potassium sorbate diffusion through edible whey protein films. J Food Eng 47(2):149–155

    Article  Google Scholar 

  • Park SI, Zhao Y (2004) Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J Agric Food Chem 52(7):1933–1939

    Article  CAS  Google Scholar 

  • Park HJ, Chinnan MS, Shewfelt RL (1994) Edible corn-zein filmcoatings to extend storage life of tomatoes. J Food Process Pres 18:317–331

    Article  Google Scholar 

  • Pommet M, Redl A, Morel MH, Guilbert S (2003) Study of wheatgluten plasticization with fatty acids. Poly 44:115–122

    Article  CAS  Google Scholar 

  • Pranoto Y, Rakshit SK, Salokhe VM (2005) Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol 38:859–865

    Article  CAS  Google Scholar 

  • Qurashi MT, Blair HS, Allen SJ (1992) Studies on modified chitosan membranes.I. Preparation and characterization. J Appl Poly Sci 46(2):255–261

    Article  CAS  Google Scholar 

  • Ramos OL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Pocas MF, Pintado ME, Malcata FX (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured there from. Food Hydro 30:110–122

    Article  CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Perry KWNG (2006) Preparation and characterization of chitosan based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  Google Scholar 

  • Saucedo-Pompa S, Rojas-Molina R, Aguilera-Carbó AF, Saenz-Galindo A, de La Garza H, Jasso-Cantú D, Aguila CN (2009) Edible film based on candelilla wax to improve the shelf life and quality of avocado. Food Res Int 4(42):511–515

    Article  Google Scholar 

  • Sebti I, Chollet E, Degraeve P, Noel C, Peyrol E (2007) Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. J Agric Food Chem 55(3):693–699

    Article  CAS  Google Scholar 

  • Sobral PJA, Menegalli FC, Hubinguer MD, Roques MA (2001) Mechanical, water vapour barrier and thermal properties of gelatin based edible films. Food Hydro 15:423

    Article  CAS  Google Scholar 

  • Srinivasa PC (2004) Process development of biodegradable chitosan based films and their suitability for food packaging. Ph.D. Thesis, CFTRI, Mysore

  • Srinivasa PC, Baskaran R, Ramesh MN, Harish Prashanth KV, Tharanathan RN (2002) Storage studies of mango packed using biodegradable chitosan film. Eur Food Res Technol 215:504–508

    Article  CAS  Google Scholar 

  • Srinivasa PC, Ramesh MN, Tharanathan RN (2007) Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydro 21:1113–1122

    Article  CAS  Google Scholar 

  • Stuchell YM, Krochta JM (1994) Enzymatic treatments and thermal effects on edible soy protein films. JFood Sci 59:1322–1337

    Google Scholar 

  • Suzuki S, Shimahashi K, Takahara J, Sunako M, Takaha T, Ogawa K (2005) Effect of addition of water-soluble chitin on amylose film. Biomacromolecules 6(6):3238–3242

    Article  CAS  Google Scholar 

  • Tripathi S, Mehrotra GK, Dutta PK (2008) Chitosan based antimicrobial films for food packaging applications. E-Polym 93:1–7

    Google Scholar 

  • Wittaya T, Sopanodora P (2009) Effect of some process parameters on the properties of edible film produced from Lizard Fish (Saurida Undosquamis) muscle. J Food Sci Technol 1(9):27–42

    Google Scholar 

  • Xie L, Hettiarachchy NS, Ju ZY, Meullenet J, Wang H, Slavik MF, Janes ME (2002) Edible film coating to minimize egg shellbreakage post-wash bacterial contamination measured by penetrationin eggs. J Food Sci 67:280–284

    Article  CAS  Google Scholar 

  • Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Cro Prod 21:185–192

    Article  CAS  Google Scholar 

  • Yan Q, Hou H, Guo P, Dong H (2012) Effect of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87:707–712

    Article  CAS  Google Scholar 

  • Yang L, Paulson AT (2000) Effects of lipids on mechanical and moisture barriers properties of edible gellan flim. Food Res Int 55:571–578

    Article  Google Scholar 

  • Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57(1):83–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar Chatli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T.P., Chatli, M.K. & Sahoo, J. Development of chitosan based edible films: process optimization using response surface methodology. J Food Sci Technol 52, 2530–2543 (2015). https://doi.org/10.1007/s13197-014-1318-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1318-6

Keywords

Navigation