Skip to main content

Advertisement

Log in

Molecular Biology in the Breast Clinics—Current status and future perspectives

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Breast cancer is no longer considered a single disease, and with better understanding of cancer biology, its management has evolved over the years, into a complex individualized use of therapeutics based on variable expressions of predictive and prognostic factors. With the advent of molecular and genetic research, the complexity and diversity of breast cancer cells and their ability to survive and develop resistance to treatment strategies became more evident. At the same time, targeted therapies evolved, as specific targets were discovered such as HER2 receptor, and androgen receptor. More recent is the development of immunotherapy which aims at strengthening the host immune system to identify and kill the tumor cells. In breast cancer treatment, use of molecular tests has been a target of controversies, due to their high costs and inaccessibility in limited resource situations. Research in breast cancer is also proceeding at a rapid pace, but it is important to remember that breast cancer continues to be a complex interplay of alterations at molecular and genetic level, with the variability in expressions at protein level leading to difference in behavior and responses to treatment and overall outcome. In the succeeding paragraphs, we will try to review the available evidence in literature and attempt to understand the molecular complexity of breast cancer in order to simplify the art of treating the disease and improving outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher B (1992) The evolution of paradigms for the management of breast cancer: a personal perspective. Cancer Res 52:2371–2383

    CAS  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  3. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997e4013

    Google Scholar 

  4. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med 134:e48e72

    Google Scholar 

  5. Adjuvant! Online program www.adjuvantonline.com.

  6. Ravdin PM (1996) A computer program to assist in making breast cancer adjuvant therapy decisions. Semin Oncol 23(1 Suppl 2):43–50

    CAS  PubMed  Google Scholar 

  7. Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF (2002) Overview of the SEER-Medicare data: content, research applications, and generalizability to the United States elderly population. Med Care 80(8 Suppl IV):3–18

    Google Scholar 

  8. Ravdin PM, Siminoff LA, Davis GJ et al (2001) Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol 19(4):980–991

    CAS  PubMed  Google Scholar 

  9. Wishart GC, Azzato EM, Greenberg DC et al (2010) PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res 12(1):R1

    PubMed  PubMed Central  Google Scholar 

  10. Yeo B, Zabaglo L, Hills M, Dodson A, Smith I, Dowsett M (2015) Clinical utility of the IHC4+C score in oestrogen receptor positive early breast cancer: a prospective decision impact study. Br J Cancer 26;113(3):390–395. https://doi.org/10.1038/bjc.2015.222.Epub

    Article  Google Scholar 

  11. Acs G, Esposito NN, Kiluk J, Loftus L, Laronga C (2012) A mitotically active, cellular tumor stroma and/or inflammatory cells associated with tumor cells may contribute to intermediate or high Oncotype DX Recurrence Scores in low grade invasive breast carcinomas. Mod Pathol 25:556e66

    Google Scholar 

  12. Palmieri C, Saji S, Sakaguchi H et al (2004) The expression of oestrogen receptor (ER)-beta and its variants, but not ERalpha, in adult human mammary fibroblasts. J MolEndocrinol 33:35e50

    Google Scholar 

  13. Latta EK, Tjan S, Parkes RK, O’Malley FP (2002) The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol 15:1318e25

    Google Scholar 

  14. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    CAS  PubMed  Google Scholar 

  15. Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28:1829–1834

    PubMed  Google Scholar 

  16. Harris L, Fritsche H, Mennel R et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    CAS  PubMed  Google Scholar 

  17. Goldhirsch A, Wood WC, Coates AS, et al. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol2011;22:1736–1747.

  18. Sparano JA et al (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. NEngl J Med 379:111–121

    CAS  Google Scholar 

  19. van de Vijver MJ, He YD, van't Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  Google Scholar 

  20. Mook S, Schmidt MK, Weigelt B et al (2010) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol 21:717–722

    CAS  PubMed  Google Scholar 

  21. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1892

    CAS  PubMed  Google Scholar 

  22. Mook S, Schmidt MK, Viale G et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116:295–302

    CAS  PubMed  Google Scholar 

  23. Viale Gde Snoo FA, Slaets L et al (2018) Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial. Breast Cancer Res Treat 167(1):123–131. https://doi.org/10.1007/s10549-017-4509-9 Epub 2017 Sep 19

    Article  CAS  Google Scholar 

  24. Filipits M, Rudas M, Jakesz R et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17:6012–6020

    CAS  PubMed  Google Scholar 

  25. Ma XJ, Salunga R, Dahiya S et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–2608

    CAS  PubMed  Google Scholar 

  26. Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616

    CAS  PubMed  Google Scholar 

  27. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160

    PubMed  PubMed Central  Google Scholar 

  28. Lænkholm AV, Jensen MB, Eriksen JO, Rasmussen BB, Knoop AS, Buckingham W, Ferree S, Schaper C, Nielsen TO, Haffner T, Kibøl T (2018) PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor–positive early breast cancer. J Clin Oncol 36(8):735–740

    PubMed  Google Scholar 

  29. Laoui D, Movahedi K, Van Overmeire E et al (2011) Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. IInt.J.Dev.Biol 55:861–867. https://doi.org/10.1387/ijdb.113371dl

    Article  Google Scholar 

  30. Glauben Landskron, Marjorie De la Fuente, Peti Thuwajit, Chanitra Thuwajit, and Marcela A. Hermoso. Chronic inflammation and cytokines in the tumor microenvironment. Journal of Immunology Research, Vol 2014, Article ID 149185.

  31. Shou J, Zhang Z, Lai Y, Chen Z, Huang J (2016) Worse outcome in breast cancer with higher tumor infiltrating FOXP3+: a systematic review and meta-analysis. BMC Cancer 16:687. https://doi.org/10.1186/s12885-016-2732-0

  32. Xuan Li, Danian Dai, Bo Chen, Hailin Tang, Xiaoming Xie, and Weidong Wei. Clinicopathological and prognostic significance of cancer antigen 15-3 and carcinoembryonic antigen in breast cancer: a meta-analysis including 12,993 Patients. Hindawi: Disease Markers Volume 2018, Article ID 9863092, 15 pages https://doi.org/10.1155/2018/9863092

  33. McGhan LJ, McCullough AE, Protheroe CA et al (2013) Androgen receptor-positive triple negative breast cancer: a unique breast cancer subtype. Ann SurgOncol 2014(21):367. https://doi.org/10.1245/s10434-013-3260-7

    Article  Google Scholar 

  34. Pistelli M, Caramanti M, Biscotti T et al (2014) Androgen receptor expression in early triple-negative breast cancer: clinical significance and prognostic associations. Cancers (Basel) 6:1351–1362. https://doi.org/10.3390/cancers6031351

    Article  CAS  Google Scholar 

  35. Astvatsaturyan K, Yue Y, Walts AE, Bose S (2018) Androgen receptor positive triple negative breast cancer: clinicopathologic, prognostic, and predictive features. PLoS One 13(6):e0197827. https://doi.org/10.1371/journal.pone.0197827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lehman BD, Jovanović B, Chen X et al Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. 2016. PLoS One. https://doi.org/10.1371/journal.pone.0157368

  37. Jezequel P, Loussouarn D, GueÂrin-Charbonnel C et al (2015) Gene expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res 17:43. https://doi.org/10.1186/s13058-015-0550-y

  38. Fleisher B, Clarke C, Ait-Oudhia S (2016) Current advances in biomarkers for targeted therapy in triple-negative breast cancer. Breast Cancer - Targets and Therapy 8:183–197

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Roberti MP, Arriaga JM, Bianchini M et al (2012) Protein expression changes during human triple negative breast cancer cell line progression to lymph node metastasis in a xenografted model in nude mice. Cancer BiolTher 13(11):1123–1140

    CAS  Google Scholar 

  40. Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366(4):310–320

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tolaney SM, Boucher Y, Duda DG et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. ProcNatlAcadSci U S A 112(46):14325–14330

    CAS  Google Scholar 

  42. Soliman H, Khalil F, Antonia S (2014) PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS One 9(2):e88557

    PubMed  PubMed Central  Google Scholar 

  43. Alsaab HO, Sau S, Alzhrani R et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 23. https://doi.org/10.3389/fphar.2017.00561

  44. Pande M, Bondy ML, Do KA et al (2014) Association between germline single nucleotide polymorphisms in the PI3K-AKT-mTOR pathway, obesity, and breast cancer disease-free survival. Breast Cancer Res Treat 147(2):381–387

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shiovitz S, Korde LA (2015) Genetics of breast cancer: a topic in evolution. Ann Oncol 26(7):1291–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    CAS  PubMed  Google Scholar 

  47. Chen XS, Yuan Y, Garfield DH, Wu JY, Huang O, Shen KW (2014) Both carboplatin and bevacizumab improve pathological complete remission rate in neoadjuvant treatment of triple negative breast cancer: a meta-analysis. PLoS One 9(9):e108405

    PubMed  PubMed Central  Google Scholar 

  48. Andre F, Hatzis C, Anderson K et al (2007) Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer. Clin Cancer Res 13(7):2061–2067

    CAS  PubMed  Google Scholar 

  49. Rouzier R, Rajan R, Wagner P et al (2005) Microtubuleassociated protein tau: a marker of paclitaxel sensitivity in breast cancer. ProcNatlAcadSci USA 102(23):8315–8320

    CAS  Google Scholar 

  50. Pusztai L, Jeong J-H, Gong Y et al (2009) Evaluation of microtubule-associated protein-Tau expression as a prognostic and predictive marker in the NSABP-B 28 randomized clinical trial. J ClinOncol 27(26):4287–4292

    CAS  Google Scholar 

  51. Gianni L, Esserman W, Semiglazov V et al (2014) Neo-adjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomized controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 15(6):640–647. https://doi.org/10.1016/S1470-2045(14)70080-4

  52. Kang SA, Guan JS, Tan HJ, Chu T et al (2018) Elevated WBP2 expression in HER2 positive breast cancers correlates with sensitivity to trastuzumab-based neo-adjuvant therapy: a retrospective and multicentre study. Clin Cancer Res 28 [Epub ahead of print]

  53. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N, Valero V (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22(12):2284–2293

    CAS  PubMed  Google Scholar 

  54. Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23:7265–7277

    CAS  PubMed  Google Scholar 

  55. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O’Connell P (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet. 362(9381):362–369

    CAS  PubMed  Google Scholar 

  56. Knoop AS, Knudsen H, Balslev E, Rasmussen BB, Overgaard J, Nielsen KV, Schonau A, Gunnarsdóttir K, Olsen KE, Mouridsen H, Ejlertsen B (2005) Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol 23(30):7483–7490

    CAS  PubMed  Google Scholar 

  57. Tanner M, Isola J, Wiklund T, Erikstein B, Kellokumpu-Lehtinen P, Malmström P, Wilking N, Nilsson J, Bergh J (2006) Topoisomerase IIα gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu–amplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol 24(16):2428–2436

    CAS  PubMed  Google Scholar 

  58. Desmedt C, Di Leo A, de Azambuja E, Larsimont D, Haibe-Kains B, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, Maerevoet M (2011) Multifactorial approach to predicting resistance to anthracyclines. J ClinOncol 29(12):1578–1586

    CAS  Google Scholar 

  59. Slamon D, Press M (2009) Alterations in the TOP2A and HER2 genes. J Natl Cancer Inst 101(9):615–618

    CAS  PubMed  Google Scholar 

  60. Hahnen E, Lederer B, Hauke J et al (2017) Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto Randomized Clinical Trial. JAMA Oncol 3(10):1378–1385. https://doi.org/10.1001/jamaoncol.2017.1007

    Article  PubMed  PubMed Central  Google Scholar 

  61. Halsted WS (1907) I. The results of radical operations for the cure of carcinoma of the breast. Ann Surg 46:1–19

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172

    PubMed  Google Scholar 

  63. Masuda N, Lee SJ, Ohtani S et al (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376(22):2147–2159

    CAS  PubMed  Google Scholar 

  64. vonMinckwitz G, Huang CS, Mano MS et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 380:617–628

    CAS  Google Scholar 

  65. Voduc KD, Cheang MC, Tyldesley S et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J ClinOncol 28:1684–1691

    Google Scholar 

  66. Nguyen PL, Taghian AG, Katz MS et al (2008) Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. JClinOncol 26:2373–2378

    Google Scholar 

  67. Millar EK, Graham PH, O’Toole SA et al (2009) Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel. J ClinOncol 27:4701–4708

    Google Scholar 

  68. Albert JM, Gonzalez-Angulo AM, Guray M, et al: Estrogen/progesterone receptor negativity and HER2 positivity predict locoregional recurrence in patients with T1a,bN0 breast cancer. Int J RadiatOncolBiolPhys 77:1296–1302, 2010

  69. Freedman GM, Anderson PR, Li T et al (2009) Locoregional recurrence of triple-negative breast cancer after breast-conserving surgery and radiation. Cancer 115:946–951

    PubMed  Google Scholar 

  70. Rausei S, Rovera F, Dionigi G, Tornese D, Fachinetti A, Boni L, Dionigi R (2010) Predictors of loco-regional recurrence and cancer-related death after breast cancer surgery. Breast J 16(Suppl 1):S29–S33

    PubMed  Google Scholar 

  71. Cheng SH, Horng CF, West M (2006) Genomic prediction of locoregional recurrence after mastectomy in breast cancer. J ClinOncol 24(28):4594–4602

    CAS  Google Scholar 

  72. Abdulkarim BS, Cuartero J, Hanson J et al (2011) Increased risk of locoregional recurrence for women with T1-2N0 triple-negative breast cancer treated with modified radical mastectomy without adjuvant radiation therapy compared with breast-conserving therapy. J ClinOncol 29:2852–2858

    Google Scholar 

  73. Panoff JE, Hurley J, Takita C et al (2011) Risk of locoregional recurrence by receptor status in breast cancer patients receiving modern systemic therapy and postmastectomy radiation. Breast Cancer Res Treat 128:899–906

    CAS  PubMed  Google Scholar 

  74. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J ClinOncol 24:3726–3734

    CAS  Google Scholar 

  75. Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Overgaard J (2008) Estrogen receptor, progesterone receptor, HER-2, and response to post-mastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J ClinOncol 26(9):1419e26

    Google Scholar 

  76. Ho AY, Gupta G, King TA, Perez CA, Patil SM, Rogers KH et al (2012) Favorable prognosis in patients with T1a/T1bN0 triple-negative breast cancers treated with multimodality therapy. Cancer 118(20):4944–4952

    PubMed  Google Scholar 

  77. Millar EK, Graham PH, O'Toole SA, McNeil CM, Browne L, Morey AL et al (2009) Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel. J ClinOncol 27(28):4701–4708

    Google Scholar 

  78. Tseng WH, Martinez SR (2011) Metaplastic breast cancer: to radiate or not to radiate? Ann Surg Oncol 18(1):94–103

    PubMed  Google Scholar 

  79. http://www.nccn.org/professionals/physician_gls/f_guidelines.asp

  80. Giuliano AE, Hunt KK, Ballman KV et al (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305:569–575

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rutgers EJ, Donker M, Straver ME et al (2013) Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer patients: final analysis of the EORTC AMAROS trial (10981/22023). J ClinOncol 31(suppl; abstr LBA1001)

  82. Slamon DJ, Mackey J, Robert N, et al.Role of anthracycline-based therapy in the adjuvant treatment of breast cancer: efficacy analyses determined by molecular subtypes of the disease #13. Presented at: 30th Annual San Antonio Breast Cancer Symposium; Dec. 13–16, 2007; San Antonio.

  83. Järvinen TA, Tanner M, Rantanen V, Bärlund M, Borg Å, Grénman S, Isola J (2000) Amplification and deletion of topoisomerase IIα associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol 156(3):839–847

    PubMed  PubMed Central  Google Scholar 

  84. Di Leo A, Gancberg D, Larsimont D, Tanner M, Jarvinen T, Rouas G, Dolci S, Leroy JY, Paesmans M, Isola J, Piccart MJ (2002) HER-2 amplification and topoisomerase IIα gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with cyclophosphamide, methotrexate, and 5-fluorouracil. Clin Cancer Res 8(5):1107–1116

    PubMed  Google Scholar 

  85. Park K, Kim J, Lim S, Han S (2003) Topoisomerase II-α (topoII) and HER2 amplification in breast cancers and response to preoperative doxorubicin chemotherapy. Eur J Cancer 39(5):631–634

    CAS  PubMed  Google Scholar 

  86. Arriola E, Rodriguez-Pinilla SM, Lambros MB, Jones RL, James M, Savage K, Smith IE, Dowsett M, Reis-Filho JS (2007) Topoisomerase II alpha amplification may predict benefit from adjuvant anthracyclines in HER2 positive early breast cancer. Breast Cancer Res Treat 106(2):181–189

    CAS  PubMed  Google Scholar 

  87. O’malley FP, Chia S, Tu D, Shepherd LE, Levine MN, Bramwell VH, Andrulis IL, Pritchard KI (2009) Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 101(9):644–650

    PubMed  PubMed Central  Google Scholar 

  88. Gennari A, Sormani MP, Pronzato P, Puntoni M, Colozza M, Pfeffer U, Bruzzi P (20082) HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. JNCI: J Natl Cancer Institut 100(1):14–20

  89. Slamon DJ, Eiermann W, Robert NJ, et al: Ten-year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2-positive early breast cancer patients. 2015 San Antonio Breast Cancer Symposium. Abstract S5-04. Presented December 11, 2015.

  90. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, Mierzwa T, Szwiec M, Wiśniowski R, Siolek M, Dent R (2009) Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 28(3):375–379

    PubMed  Google Scholar 

  91. Kriege M, Seynaeve C, Meijers-Heijboer H, Collee JM, Menke-Pluymers MB, Bartels CC, Tilanus-Linthorst MM, Blom J, Huijskens E, Jager A, van den Ouweland A (2009) Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol 27(23):3764–3771

    PubMed  Google Scholar 

  92. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, Juul N, Leong CO, Calogrias D, Buraimoh A, Fatima A (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sirohi B, Arnedos M, Popat S, Ashley S, Nerurkar A, Walsh G, Johnston S, Smith IE (2008) Platinum-based chemotherapy in triple-negative breast cancer. Ann Oncol 19(11):1847–1852

    CAS  PubMed  Google Scholar 

  94. Liu M, Mo QG, Wei CY, Qin QH, Huang Z, He JI (2013) Platinum-based chemotherapy in triple-negative breast cancer: a meta-analysis. Oncol Lett 5(3):983–991

    CAS  PubMed  Google Scholar 

  95. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117(5):1370–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Santana-Davila R, Perez EA (2010) Treatment options for patients with triple-negative breast cancer. J Hematol Oncol 3(1):42

    PubMed  PubMed Central  Google Scholar 

  97. Horak CE, Lee FY, Xu L, Galbraith S, Baselga J (2009) High β-III tubulin expression in triple-negative (TN) breast cancer (BC) subtype and correlation to ixabepilone response: a retrospective analysis. J Clin Oncol 27(15_suppl):3587

    Google Scholar 

  98. Rugo HS, Thomas ES, Lee RK, Fein LE, Peck R, Verrill M. Combination therapy with the novel epothilone B analog, ixabepilone, plus capecitabine has efficacy in ER/PR/HER2-negative breast cancer resistant to anthracyclines and taxanes. InBreast Cancer Research and Treatment 2007 Dec 1 (Vol. 106, pp. S270-S270).

  99. Cortes J, O'Shaughnessy J, Loesch D, Blum JL, Vahdat LT, Petrakova K, Chollet P, Manikas A, Diéras V, Delozier T, Vladimirov V (2011) Eribulin monotherapy versus treatment of physician's choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet 377(9769):914–923

    CAS  PubMed  Google Scholar 

  100. Ibrahim YH, García-García C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzmán M, Grueso J, Rodríguez O (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer discovery 2(11):1036–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sonnenblick A, De Azambuja E, Azim HA Jr, Piccart M (2015) An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol 12(1):27

    CAS  PubMed  Google Scholar 

  102. Chuang HC, Kapuriya N, Kulp SK, Chen CS, Shapiro CL (2012) Differential anti-proliferative activities of poly (ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat 134(2):649–659

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ratnam K, Low JA (2007) Current development of clinical inhibitors of poly (ADP-ribose) polymerase in oncology. Clin Cancer Res 13(5):1383–1388

    CAS  PubMed  Google Scholar 

  104. Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, Pritchard K, Eisen A, Vandenberg T, Taylor M, Sauerbrei E (2009) Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND. 163. ClinOncol. 27(27):4536–4541

    CAS  Google Scholar 

  105. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, Mills GB, Meric-Bernstam F (2004) Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 10(20):7031–7042

    CAS  PubMed  Google Scholar 

  106. Mayer I, Means-Powell J, Shyr Y, Arteaga C. A phase Ib trial of erlotinib, an EGFR inhibitor, and everolimus (RAD001), an mTOR inhibitor, in patients with metastatic breast cancer.

  107. Greenberg S, Rugo HS (2010) Triple-negative breast cancer: role of antiangiogenic agents. The Cancer Journal 16(1):33–38

    CAS  PubMed  Google Scholar 

  108. Ryan PD, Tung NM, Isakoff SJ, Golshan M, Richardson A, Corben AD, Smith BL, Gelman R, Winer EP, Garber JE (2009) Neoadjuvant cisplatin and bevacizumab in triple negative breast cancer (TNBC): safety and efficacy. J Clin Oncol 27(15S):551

    Google Scholar 

  109. Minami CA, Chung DU, Chang HR (2011) Management options in triple-negative breast cancer. Breast Cancer: Basic Clin Res 5:BCBCR–S6562

    Google Scholar 

  110. Dowsett M (2001) Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr Relat Cancer 8(3):191–195

    CAS  PubMed  Google Scholar 

  111. Jones A (2003) Combining trastuzumab (Herceptin®) with hormonal therapy in breast cancer: what can be expected and why? Ann Oncol 14(12):1697–1704

    CAS  PubMed  Google Scholar 

  112. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E (2005) A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 11(13):4741–4748

    PubMed  Google Scholar 

  113. Lipton A, Ali SM, Leitzel K, Demers L, Chinchilli V, Engle L, Harvey HA, Brady C, Nalin CM, Dugan M, Carney W (2002) Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol 20(6):1467–1472

    CAS  PubMed  Google Scholar 

  114. García-Becerra R, Santos N, Díaz L, Camacho J (2012) Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 14(1):108–145

    PubMed  PubMed Central  Google Scholar 

  115. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24(2):85–95

    CAS  PubMed  Google Scholar 

  116. Antoniotti S, Maggiora P, Dati C, De Bortoli M (1992) Tamoxifen up-regulates c-erbB-2 expression in oestrogen-responsive breast cancer cells in vitro. Eur J Cancer 28(2–3):318–321

    CAS  PubMed  Google Scholar 

  117. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 10(12):2435–2446

    CAS  PubMed  Google Scholar 

  118. Johnston S, Pippen J Jr, Pivot X, Lichinitser M, Sadeghi S, Dieras V, Gomez HL, Romieu G, Manikhas A, Kennedy MJ, Press MF (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor–positive metastatic breast cancer. J Clin Oncol 27(33):5538–5546

    CAS  PubMed  Google Scholar 

  119. Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, Tjulandin S, Jahn M, Lehle M, Feyereislova A, Révil C (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2–positive, hormone receptor–positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. J Clin Oncol 27(33):5529–5537

    CAS  PubMed  Google Scholar 

  120. Azim HA Jr, Piccart MJ (2010) Simultaneous targeting of estrogen receptor and HER2 in breast cancer. Expert Rev Anticancer Ther 10(8):1255–1263

    CAS  PubMed  Google Scholar 

  121. Wheler JJ, Atkins JT, Janku F, Moulder SL, Yelensky R, Stephens PJ, Kurzrock R (2015) Multiple gene aberrations and breast cancer: lessons from super-responders. BMC Cancer 15(1):442

    PubMed  PubMed Central  Google Scholar 

  122. Lousberg L, Collignon J, Jerusalem G (2016) Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies. Ther Adv Med Oncol 8(6):429–449

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Weigelt B, Mackay A, A’hern R, Natrajan R, Tan DS, Dowsett M, Ashworth A, Reis-Filho JS (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. The Lancet Oncology 11(4):339–349

    CAS  PubMed  Google Scholar 

  124. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci 100(14):8418–8423

    PubMed  PubMed Central  Google Scholar 

  125. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7(1):96

    PubMed  PubMed Central  Google Scholar 

  126. Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M, Furlanello C, Game L, Jurman G, Mangion J (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41(2):149

    CAS  PubMed  Google Scholar 

  127. Abstract number 90, presented at UAE Cancer Congress 2018, Dubai

  128. Cuzick J et al (2011) Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29(32):4273–4278

    PubMed  Google Scholar 

  129. Andre F, Pusztai L (2006) Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 3(11):621–632 Review

    PubMed  Google Scholar 

  130. Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schütz F, Goldstein DR, Piccart M, Delorenzi M (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65. https://doi.org/10.1186/bcr2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lu C, Romo-Bucheli D, Wang X, Janowczyk A, Ganesan S, Gilmore H, Rimm D, Madabhushi A (2018) Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab Investig 98(11):1438–1448. https://doi.org/10.1038/s41374-018-0095-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Parmar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, V., Nair, N.S., Thakkar, P. et al. Molecular Biology in the Breast Clinics—Current status and future perspectives. Indian J Surg Oncol 12 (Suppl 1), 7–20 (2021). https://doi.org/10.1007/s13193-019-00954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-019-00954-1

Keywords

Navigation