Skip to main content
Log in

Mid- to Late Holocene Environmental Evolution of a High Mountain Wetland in the Subtropical Andes Cordillera of Argentina

  • Wetlands in the Developing World
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetlands in mountains are highly dynamic and provide ecosystem services to human wellbeing. Understanding temporal and spatial wetland dynamics is crucial for successful management. This paper presents the reconstruction of a mire evolution at a high-altitude Andean valley in central-western Argentina, in subtropical South America (30°-36° S), during the Mid- and Late Holocene. The research is based on sedimentological and pollen analysis from a sedimentary section of 3.2 m thick exposed at the El Peñón valley. The record begins with an outwash environment after ca. 5700 cal. yrs BP associated with Pteridophytes dominance, followed by the development of a mire environment after ca. 3700 cal. yrs BP associated with Cyperaceae dominance. The environmental and vegetation changes are hypothesised to have occurred in response to a shift from cold to warmer conditions. Colder environments may have occurred again between 800 until < 600 cal. yrs BP, probably associated with the Little Ice Age. Tephra inputs are evidenced in the record from 1200 years BP onwards. However, the results do not show any conclusive evidence about the impact of volcanism in the dynamics of the wetland. High Amaranthaceae proportions would evidence human activities in the high-altitude valleys of the southern Andes, probably for the last 250 cal. yrs BP. This work permitted us to infer the evolution of the El Peñón wetland under multiple concurrent forcing factors from the Mid- Holocene onwards at different temporal scales, i.e. climate during the last 5700 yrs, and volcanism and anthropogenic impacts during the last millennium.

Resumen

Los humedales de montaña son altamente dinámicos y proveen servicios ecosistémicos a la humanidad. La comprensión de la dinámica temporal y espacial de los humedales es crucial para un manejo exitoso. Este trabajo presenta la reconstrucción de la evolución de una vega de montaña durante el Holoceno Medio y Tardío, en un valle andino del centro-oeste de Argentina, región subtropical de América del Sur (30°-36° S). La investigación está basada en los análisis sedimentológico y polínico de una sección sedimentaria de 3,2 m de potencia, expuesta en el valle El Peñón. El registro comienza con un ambiente de planicie glacifluvial posterior a los 5700 años cal. AP, asociado con dominancia de Pteridofitas, seguido por el desarrollo de un ambiente de vega luego de los 3700 años cal. AP, asociado con dominancia de Cyperaceae. Los cambios ambientales y de vegetación habrían ocurrido en respuesta a un cambio de condiciones frías a más cálidas. Condiciones más frías habrían ocurrido nuevamente entre los 800 y < 600 años cal. AP, asociadas probablemente con la Pequeña Edad de Hielo. Se observaron depósitos de cenizas volcánicas en el registro a partir de los 1200 cal. años AP. Sin embargo, los resultados no muestran evidencia concluyente sobre los impactos del volcanismo en la dinámica del humedal. Altas proporciones de Amaranthaceae se vincularían con actividades humanas en estos valles montañosos de Los Andes, probablemente en los últimos 250 cal. años AP. Este trabajo nos permitió inferir la evolución del humedal en el valle El Peñón bajo múltiples y concurrentes factores ambientales desde el Holoceno Medio en adelante en diferentes escalas temporales, i.e. el clima durante los últimos 5700 años, y el volcanismo y el impacto antrópico durante el último milenio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Bruniard (1982). Yellow star: location of the studied sedimentary section; yellow dashed line: Argentina—Chile international border; yellow solid line: contour lines

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Arana M, Bianco C, Martínez Carretero E, Oggero A (2011) Licofitas y helechos de Mendoza. Multequina 20. ISSN: 0327–9375. https://www.redalyc.org/articulo.oa?id=42824203011 last-accessed 18/08/2020

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5(5):512–518

    Article  Google Scholar 

  • Belmar C, Quiróz L, Reyes V (2010) ¿Las comunidades alfareras iniciales de la Zona Central son sólamente cazadoras-recolectoras? Una pregunta enunciada desde el registro carpológico del sitio Estación Quinta Normal, Línea 5 del Metro de Santiago. Actas del XVI Congreso Nacional de Arqueología Chilena. Tomo II: 1179–1189. Santiago.

  • Benzaquén L, Blanco DE, Bo R, Kandus P, Lingua G, Minotti P, Quintana R. (Eds.) (2017) Regiones de Humedales de la Argentina. Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales / Wetlands International, Universidad Nacional de San Martín y Universidad de Buenos Aires, pp 333. ISBN: 978–987–29811–6–7

  • Bower MM (1960) Peat erosion in the Pennines. Advances of Science 64:323–331

    Google Scholar 

  • Bower MM (1961) The erosion of blanket peat in the Southern Pennines. East Midlands Geographer 2(13):22–33

    Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in Medieval Time. Science 302:404–405

    Article  CAS  PubMed  Google Scholar 

  • Bridge J, Demicco R (2008) Earth surface processes, landforms and sediment deposits. Cambridge University Press, Cambridge, p 815

    Book  Google Scholar 

  • Bruniard E (1982) La diagonal árida Argentina: un límite climático real. Rev Geogr 95:5–20

    Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas Argentinas. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería. Buenos Aires: ACME: 1–85 pp.

  • Carrevedo ML, Frugone M, Latorre C, Maldonado A, Bernárdez P, Prego R, Cárdenas D, Valero-Garcés B (2015) A 700-year record of climate and environmental change from a high Andean lake: Laguna del Maule, central Chile (36°S). The Holocene 25(6):956–972

    Article  Google Scholar 

  • Clarkson BR, Ausseil AE, Gerbeaux P (2013) Wetland ecosystem services. In: Dymond JR (ed) Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, pp 192–202

    Google Scholar 

  • Dean WE (1999) The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolim 21:375–393

    Article  Google Scholar 

  • Durán V (2000) Poblaciones indígenas de Malargüe. Su arqueología e historia. Serie Libros del CEIDER. Tomo 1. Facultad de Filosofía y Letras. Universidad Nacional de Cuyo. Mendoza.

  • Durán V, Winocur D, Stern C, Garvey R, Barberena R, Peña Monné J, Benítez A (2016) Impacto del volcanismo y glaciarismo holocénicos en el poblamiento humano de la cordillera sur de Mendoza (Argentina): una perspectiva geoarquelógica Revista Intersecciones en Antropología. Volumen Especial 4: 33–46. Facultad de Ciencias Sociales. Universidad Nacional del Centro de la Provincia de Buenos Aires. Olavarría.

  • Espizua LE (2005) Holocene glacier chronology of Valenzuela Valley, Mendoza Andes Argentina. Holocene 15(7):1079–1085

    Article  Google Scholar 

  • Espizua LE, Pitte P (2009) The Little Ice Age glacier advance in the Central Andes (35°S), Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:345–350

    Article  Google Scholar 

  • Evans M, Warburton J (2007) Geomorphology of upland peat: erosion, form and landscape change. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of Pollen Analysis. 4th Edition. (ed K Faegri, PE Kaland and K Krzywinski). John Wiley & Sons: Chichester.

  • Folk RL, Andrews PB, Lewis DW (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. N Z J Geol Geophys 13:937–968

    Article  Google Scholar 

  • Frugone-Álvarez M, Latorre C, Barreiro-Lostres F, Giralt S, Moreno A, Polanco-Martínez J, Maldonado A, Carrevedo ML, Bernárdez P, Prego R, Delgado Huertas A, Fuentealba M, Valero-Garcés B (2020) Volcanism and climate change as drivers in Holocene depositional dynamic of Laguna del Maule (Andes of central Chile – 36◦ S. Climate of the past 16:1097–1125

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  • Grenfell S, Grenfell M, Ellery W, Job N, Walters D (2019) A Genetic Geomorphic Classification System for Southern African Palustrine Wetlands: Global Implications for the Management of Wetlands in Drylands. Front Environ Sci 7:174. https://doi.org/10.3389/fenvs.2019.00174

    Article  Google Scholar 

  • Gil A, Zárate MA, Neme G (2005) Mid-Holocene paleoenvironments and the archeological record of southern Mendoza, Argentina. Quatern Int 132:81–94

    Article  Google Scholar 

  • Grimm E (2007) TGView-Tilia Software Version 1.0.1. Illinois State Museum, Research and Collection Center, Springfield, Illinois USA.

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproductibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Heusser CJ (1971) Pollen and Spores of Chile. University of Arizona Press, Tucson.Hoffman, JAJ (1975) Atlas climatológico de América del Sur. OMM-WMO-UNESCO, Hungría.

  • Hogg AG, Hua Q, Blackwell PG, Buck CE, Guilderson TP, Heaton TJ, Niu M, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 Southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55:1889–1903

    Article  CAS  Google Scholar 

  • Jenny B, Valero-Garce B, Villa-Martinez R, Urrutia R, Geyh M, Veit H (2002) Early to mid-Holocene aridity in central Chile and the southern westerlies: the Laguna Aculeo record (34S). Quatern Res 58:160–170

    Article  CAS  Google Scholar 

  • Lindsay R (2016) Peatland (mire types): based on origin and behavior of water, peat genesis, landscape position, and climate. In: C.M. Finlayson et al. (eds.), The Wetland Book. Springer: Dordrecht. DOI: https://doi.org/10.1007/978-94-007-6173–5_279–1.

  • Lindsay R (2018) Peatland Classification. In: C. M. Finlayson et al. (eds.), The Wetland Book. Springer Science+Business Media B.V. DOI: https://doi.org/10.1007/978-90-481-9659-3_341.

  • Malvárez AI (1999) Tópicos sobre humedales subtropicales y templados de Sudamérica. Oficina Regional de Ciencia y Técnica para América Latina y el Caribe. Programa Hombre y Biosfera-Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura, pp. 228. ISBN 92–9089–064–9.

  • Markgraf V (1983) Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7:43–70

    Article  Google Scholar 

  • Markgraf V, D’Antoni LH (1978) Pollen Flora of Argentina. University of Arizona Press, Tucson

    Google Scholar 

  • Martel-Cea A, Maldonado A, Grosjean M, Alvial I, de Jong R, Fritz SC, von Gunten L (2016) Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical, Central Chile (32°S; 3050 m a.s.l.). Palaeogeogr Palaeoclimatol Palaeoecol 461:44–54. https://doi.org/10.1016/j.palaeo.2016.08.003

    Article  Google Scholar 

  • Medina ME, Grill S, Fernandez AL, López MA (2017) Anthropogenic pollen, foraging, and crops during Sierras of Córdoba Late Prehispanic Period (Argentina)

  • Mehl AE, Zárate MA (2008) Sucesiones aluviales del Pleistoceno tardío-Holoceno del valle de Quehué, La Pampa, Argentina. XII Reunión Argentina de Sedimentología (XII RAS). Capital Federal. Buenos Aires, Argentina, del 3 al 6 de junio de 2008. Acta de resúmenes, pp. 115

  • Mehl AE (2010) Ambientes aluviales del Pleistoceno tardío-Holoceno y Holoceno del Valle de Uco, cuenca del río Tunuyán. In: Gil A, Neme G, Zárate M (Eds.), Paleoambientes y ocupaciones del centro-oeste de Argentina durante la transición Pleistoceno-Holoceno y Holoceno. Sociedad Argentina de Antropología, Buenos Aires, pp. 11- 40

  • Mehl AE, Zárate MA (2012) Late Pleistocene and Holocene environmental and climatic conditions in the eastern Andean piedmont of Mendoza (33°–34°S, Argentina). J S Am Earth Sci 37:41–59

    Article  Google Scholar 

  • Mehl AE, Zárate MA (2014) Late Glacial-Holocene climatic transition record at the Argentinian Andean piedmont between 33 and 34◦ S. Climate of the past 10:863–876

    Article  Google Scholar 

  • Méndez E (2007) La vegetación de los Altos Andes. II Las vegas del flanco oriental del Cordón del Plata. Mendoza Argentina Bol Soc Argent Bot 42:273–294

    Google Scholar 

  • Méndez, E (2011) La vegetación de Los altos Andes. El flanco oriental del Cordón del Portillo (Tunuyán, Mendoza, Argentina)

  • Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. https://doi.org/10.1029/2011GL050168

    Article  Google Scholar 

  • Morici EFA, Prina A, Alfonso GL, Muiño W (2010) Flora y vegetación del valle superior del río Atuel (Mendoza-Argentina). Bol Soc Argent Bot 45(1–2):109–118

    Google Scholar 

  • Munsell Soil Color Charts: Munsell Color x-rite, Revised and washable version, Grand Rapids, X-Rite Incorporated, Michigan, USA, 2000

  • Navarro D, Mehl AE, Zárate MA, Páez MM (2010) Mid-late Holocene environments of Agua Buena locality (34°50′S; 69°56′W), Mendoza, Argentina. In: Proceedings of the PAGES 1st Young Scientists Meeting: Retrospective View on Our Planet's Future. IOP Conference Series: Earth and Environmental Science. vol. 9 (1). Institute of Physics Publishing, UK, pp. 012014. On-line: 1755–1315. http://iopscience.iop.org/1755-1315/9/1/012014.

  • Navarro D, Rojo LD, De Francesco C, Hassan G (2012) Paleoecología y reconstrucciones paleoambientales en Mendoza durante el holoceno. In: G. Neme y A. Gil (comps.), Ecología humana y ambiente en el sur de Mendoza. Sociedad Argentina de Antropología

  • Nichols G (2009) Sedimentology and Stratigraphy, 2nd edn. Wiley-Blackwell, Chichester, p 419

    Google Scholar 

  • Norte (2000). Mapa Climatológico de Mendoza. In: Abraham, M.E., Martínez, F.M. (Eds.), Recursos y problemas ambientales de zona árida. Primera parte: Provincias de Mendoza, San Juan y La Rioja, Tomo I: Caracterización ambiental. IADIZA, Mendoza, pp. 29–48.

  • Peralta I (1985) Sinopsis de las especies de Calandrinia (Portulacaceae) de los Andes mendocinos. Bol Soc Argent Bot 25(3–4):511–537

    Google Scholar 

  • Planella MT, Falabella F, Belmar C, Quiróz L (2014) Huertos, chacras y sementeras. Plantas cultivadas y su participación en los desarrollos culturales de Chile Central. Rev Española Antropol Am 44(2):495–522

    Google Scholar 

  • Prieto MR, Abraham EM (1998) Historia ambiental del sur de Mendoza (siglos XVI al XIX) Los factores críticos de un proceso de desertificación. Bamberger Geographische Schriften Bd 15(8):277–297

    Google Scholar 

  • Quattrocchio ME, Borromei AM, Deschamps CM, Grill SC, Zavala CA (2008) Landscape evolution and climate changes in the Late Pleistocene-Holocene, southern Pampa (Argentina): evidence from palynology, mammals and sedimentology. Quatern Int 181:123–138

    Article  Google Scholar 

  • Reading HG (1996) Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd Edition. ISBN: 978–0–632–03627–1. Wiley-Blackwell, 704 pp

  • Rodbell DT, Smith J, Mark B (2009) Glaciation in the Andes during the Lateglacial and Holocene. Quatern Sci Rev 28:2165–2212

    Article  Google Scholar 

  • Roig F (1972) Bosquejo fisonómico de la vegetación de la provincia de Mendoza. Boletín De La Sociedad Argentina De Botánica 8:49–80

    Google Scholar 

  • Roig FA, Martinez Carretero E, Mendez E (2000) Vegetación de la Provincia de Mendoza. In: Abraham, E.M. y F. Rodriguez Martínez (Eds.), Recursos y Problemas Ambientales de la Zona Árida. Primera parte: provincias de Mendoza, San Juan y La Rioja. Tomo I: Caracterización ambiental: 63–66. IADIZA, Mendoza

  • Rojo LD, Mehl A, Paez MM, Zárate MA (2012) Mid- to Late Holocene pollen and alluvial record of the arid Andean piedmont between 33°- 34° S, Mendoza, Argentina: inferences about floodplain evolution. J Arid Environ 77:110–122

    Article  Google Scholar 

  • Rojo LD, Mehl A, Zárate MA, Chivas A, García A (2018) Late Pleistocene and Holocene vegetation changes in the arid Andean piedmont of central Argentina revealed by sedimentary stable carbon isotopes and C/N ratios. Palaeogeogr Palaeoclimatol Palaeoecol 495:205–213

    Article  Google Scholar 

  • Ruthsatz B, Schittek K, Backes B (2020) The vegetation of cushion peatlands in the Argentine Andes and changes in their floristic composition across a latitudinal gradient from 39°S to 22°S. Phytocoenologia 50(3):249–278

    Article  Google Scholar 

  • Salgán L, Garvey R, Neme G, Gil A, Giesso M, Glascock M, Durán V (2015) Las Cargas: Characterization of a Southern Andean Obsidian Source and Its Prehistoric Use. Geoarchaeology 30(2):139–150

    Article  Google Scholar 

  • Srur A (2002) Condiciones paleoambientales durante el Holoceno tardío en la Precordillera (Mendoza). Tesis de Grado. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata

  • Tooth S, Ellery F, Grenfell M, Thomas A, Kotze D, Ralph T (2015) Wetlands in drylands research network (10 reasons why the Geomorphology of wetlands is important) http://wetlandsindrylands.net/wp-content/uploads/2015/10/10-Reasons- Geomorphology-of-Wetlands-NEAR-FINAL-PRINTER-FRIENDLY.pdf.

  • Valero-Garcés BS, Jenny B, Rondanelli M, Delgado-Huertas A, Burns SJ, Veit H, Moreno A (2005) Palaeohydrology of Laguna de Tagua Tagua (34 300 S) and moisture fluctuations in Central Chile for the last 46 000 yr. Journal of Quaternary Sciences 20(7–8):625–641

    Article  Google Scholar 

  • Viale M, Nuñez MN (2011) Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics. J Hydrometeorol 12:481–507

    Article  Google Scholar 

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7:69. https://doi.org/10.3389/fenvs.2019.00069

    Article  Google Scholar 

  • Villa-Martínez R, Villagrán C, Jenny B (2003) The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quatern Res 60:284–293

    Article  Google Scholar 

  • Von Gunten L, Grosjean M, Rein B et al (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. The Holocene 19(6):873–881

    Article  Google Scholar 

  • Yacobaccio HD, Morales M (2005) Mid-Holocene environment and human occupation of the Puna (Susques, Argentina). Quatern Int 132(1):5–14

    Article  Google Scholar 

  • Wingenroth M (1992) La quebrada Benjamín Matienzo, su naturaleza presente y pasada. Ediciones Culturales de Mendoza, Mendoza

    Google Scholar 

  • Wingenroth M (2012) Ecosistemas presentes y pasados en la Quebrada Benjamín Matienzo (32º 35’ - 32º 50’ l. s. y 70º 06’ l. o.) Cordillera de los Andes, Mendoza. Argentina. Ameghiniana 69(3):436–456

    Google Scholar 

  • Wingenroth M, Heusser CJ (1984) Polen en la alta cordillera. IANIGLA, Mendoza

    Google Scholar 

  • Zárate MA (2002) Geología y Estratigrafía del Pleistoceno tardío-Holoceno en el piedemonte de Tunuyán-Tupungato, Mendoza, Argentina. In: Ostera HA, Panarello HO (eds) Cabaleri N, Cingolani C, Linares E, López de Luchi MG. ACTAS II XV Congreso Geológico Argentino, El Calafate, pp 615–620

    Google Scholar 

  • Zárate MA, Mehl AE (2011) Evolución geomorfológica holocena de la cuenca media del río Atuel, Mendoza, Argentina. XVIII Congreso Geológico Argentino. Neuquén. Actas (CD-ROM), Temas Generales, Estratigrafía y Sedimentología

  • Zuloaga FO, Morrone O (eds) (1999a) Catálogo de las plantas vasculares de la República Argentina. II. Acanthaceae-Euphorbiaceae (Dicotyledoneae). Monogr Syst Bot Missouri Bot Gard 74:1–621

  • Zuloaga FO, Morrone O (1999b) Catálogo de las plantas vasculares de la República Argentina. II. Fabaceae-Zygophyllaceae (Dicotyledoneae). Monogr Syst Bot Missouri Bot Gard 74:623–1269

    Google Scholar 

Download references

Acknowledgements

We acknowledge Gendarmería Nacional for allowing us access to El Peñón valley as well as the authorities from the International Centre for Earth Sciences (ICES) for granting access to the El Peñón refuge in 2014. Alejandra Guerci is thanked for helping with initial field work. Thanks are due to Dr. Jay-Henrik May for an early review of the manuscript.

Funding

It was provided through projects from Universidad Nacional de Cuyo (SeCTyP 2011–2013, 06/M051) and Agencia Nacional de Promoción Científica y Tecnológica (PICT-2009–101) from Argentina.

Author information

Authors and Affiliations

Authors

Contributions

LDR contributed to the conception and design of the study, data collection and pollen analysis, and wrote the manuscript, reviewed and edited the paper. AEM contributed to the study conception and design, analysis of sedimentological data, and co-wrote, reviewed and edited the paper. MP contributed topollen analysis. VD and RB contributed to the discussion about anthropogenic impact. All authors read and approved the final manuscript. VD was in charge of funding acquisition and administration.

Corresponding author

Correspondence to Leandro David Rojo.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojo, L.D., Mehl, A.E., Pietrelli, M. et al. Mid- to Late Holocene Environmental Evolution of a High Mountain Wetland in the Subtropical Andes Cordillera of Argentina. Wetlands 42, 32 (2022). https://doi.org/10.1007/s13157-022-01549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-022-01549-3

Keywords

Navigation