Skip to main content
Log in

Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea

  • Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study investigated the optical properties of aerosols involved in different meteorological events, including smog and Asian dust days. Carbonaceous components and inorganic species were measured in Seoul, Korea between 25 and 31 March 2012. Based on the measurements, the optical properties of aerosols were calculated by considering composition, size distribution, and mixing state of aerosols. To represent polydisperse size distributions of aerosols, a lognormal size distribution with a wide range of geometric mean diameters and geometric standard deviations was used. For the optical property calculations, the Mie theory was used to compute single-scattering properties of aerosol particles with varying size and composition. Analysis of the sampled data showed that the water-soluble components of organic matter increased on smog days, whereas crustal elements increased on dust days. The water content significantly influenced the optical properties of aerosols during the smog days as a result of high relative humidity and an increase in the water-soluble component. The absorption coefficients depended on the aerosol mixture type and the aerosol size distributions. Therefore, to improve our knowledge on radiative impacts of aerosols, especially the regional impacts of aerosols in East Asia, accurate measurements of aerosols, such as size distribution, composition, and mixture type, under different meteorological conditions are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch, M. E., and R. A. Cary, 1996: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol., 25, 221–241.

    Article  Google Scholar 

  • Boreddy, S. K. R., and K. Kawamura, 2015: A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: An outflow region of Asian dust. Atmos. Chem. Phys., 15, 6437–6453, doi:10.5194/acp-15-6437-2015.

    Article  Google Scholar 

  • Chung, C. E., V. Ramanathan, G. Carmichael, S. Kulkarni, Y. Tang, B. Adhikary, L. R. Leung, and Y. Qian, 2010: Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos. Chem. Phys., 10, 6007–6024, doi:10.5194/acp-10-6007-2010.

    Article  Google Scholar 

  • ---, K. Lee, and D. Müller, 2012: Effect of internal mixture on black carbon radiative forcing. Tellus, 64, 10925, doi:10.3402/tellusb. v64i0. 10925.

    Article  Google Scholar 

  • Chylek, P., and J. A. Coakley, 1974: Aerosols and climate. Science, 183, 75–77.

    Article  Google Scholar 

  • ---, and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett, 22, 929–931.

    Article  Google Scholar 

  • Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Australian Meteor. Mag., 47, 295–308.

    Google Scholar 

  • Engelhart, G. J., L. Hildebrandt, E. Kostenidou, N. Mihalopoulos, N. M. Donahue, and S. N. Pandis, 2011: Water content of aged aerosol. Atmos. Chem. Phys., 11, 911–920, doi:10.5194/acp-11-911-2011.

    Article  Google Scholar 

  • Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson, 1999: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401, 257–259.

    Article  Google Scholar 

  • Fu, H., M. Zhang, W. Li, J. Chen, L. Wang, X. Quan, and W. Wang, 2012: Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. Atmos. Chem. Phys., 12, 693–707, doi:10. 5194/acp-12-693-2012.

    Article  Google Scholar 

  • Hand, J. L., and W. C. Malm, 2007: Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res., 112, D16203, doi:10.1029/2007JD008484.

    Article  Google Scholar 

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844.

    Article  Google Scholar 

  • Horvath, H., M. Kasaharat, and P. Pesava, 1996: The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J. Aerosol Sci., 27, 417–435.

    Article  Google Scholar 

  • Huang, K., G. Zhuang, Q. Wang, J. S. Fu, Y. Lin, T. Liu, L. Han, and C. Deng, 2014: Extreme haze pollution in Beijing during January 2013: Chemical characteristics, formation mechanism and role of fog processing. Atmos. Chem. Phys. Discuss., 14, 7517–7556, doi:10.5194/acpd-14-7517-2014.

    Article  Google Scholar 

  • John, W., S. M. Wall, J. L. Ondo, and W. Winklmayr, 1990: Modes in the size distribution of atmospheric inorganic aerosols. Atmos. Environ., 24, 2349–2359.

    Article  Google Scholar 

  • Jung, C. H., and Y. P. Kim, 2007: Particle extinction coefficient for polydispersed aerosol using a harmonic mean type general approximated solution. Aerosol Sci. Technol., 41, 994–1001.

    Article  Google Scholar 

  • ---, J. Y. Lee, and Y. P. Kim, 2015: Estimation of aerosol optical properties considering hygroscopicity and light absorption. Atmos. Environ., 105, 191–201, doi:10.1016/j.atmosenv.2015.01.058.

    Article  Google Scholar 

  • Kawamura, K., M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, and M. Lee, 2004: Organic and inorganic compositions of marine aerosols from east Asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. Geochem. Soc. Spec. Publ., 9, 243–265.

    Google Scholar 

  • Kim, D.-H., B. J. Sohn, T. Nakajima, and T. Takamura, 2005: Aerosol radiative forcing over east Asia from ground-based solar radiation measurements. J. Geophys. Res., 110, doi:10.1029/2004JD004678.

    Google Scholar 

  • Kim, J., C. H. Jung, B.-C. Choi, S.-N. Oh, F. J. Brechtel, S.-C. Yoon, and S.-W. Kim, 2007: Number size distribution of atmospheric aerosols during ACE-Asia dust and precipitation events. Atmos. Environ., 41, 4841–4855.

    Article  Google Scholar 

  • Kim, Y. P., J. H. Seinfeld, and P. Saxena, 1993: Atmospheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol., 19, 157–181.

    Article  Google Scholar 

  • Kobayashi, H., K. Arao, T. Murayama, K. Iokibe, R. Koga, and M. Shiobara, 2007: High-resolution measurement of size distributions of Asian dust using a counter multisizer. J. Atmos. Oceanic Technol., 24, 194–205.

    Article  Google Scholar 

  • Lesins, G., P. Chylek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res., 107, 4094, doi:10.1029/2001JD000973.

    Article  Google Scholar 

  • Liu, C., C. E. Chung, F. Zhang, and Y. Yin, 2016: The colors of biomass burning aerosols in the atmosphere. Sci. Rep., 6, 28267, doi:10.1038/srep28267.

    Article  Google Scholar 

  • Lohmann, U., and G. Lesins, 2002: Stronger constrains on the anthropogenic indirect aerosol effect. Science, 298, 1012–1015.

    Article  Google Scholar 

  • ---, and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737.

    Article  Google Scholar 

  • Malm, W. C., and D. E. Day, 2001: Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ., 35, 2845–2860, doi:10.1016/S1352-2310(01)00077-2.

    Article  Google Scholar 

  • Meng, Z., D. Dabdub, and J. H. Seinfeld, 1998: Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res., 103, 3419–3435.

    Article  Google Scholar 

  • Nakajima, T., and Coauthors, 2003: Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res., 108, doi:10.1029/2002JD003261.

    Google Scholar 

  • Park, S.-U., L.-S. Chang, and E.-H. Lee, 2005: Direct radiative forcing due to aerosols in East Asia during a Hwangsa (Asian dust) event observed on 19-23 March 2002 in Korea. Atmos. Environ., 39, 2593–2606.

    Article  Google Scholar 

  • Saxena, P., and L. M. Hildemann, 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem., 24, 57–109.

    Article  Google Scholar 

  • Schulz, M., and Coauthors, 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246.

    Google Scholar 

  • Seinfeld, J. H., and S. N. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley, 1326 pp.

    Google Scholar 

  • Simoneit, B. R. T., M. Kobayashi, M. Mochida, K. Kawamura, M. Lee, H.-J. Lim, B. J. Turpin, and Y. Komazaki, 2004: Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J. Geophys. Res., 109, D19S10, doi:10.1029/2004JD004598.

    Google Scholar 

  • Song, C. H., Y. Ma, D. Orsini, Y. P. Kim, and R. J. Weber, 2005: An investigation into the ionic chemical composition and mixing state of biomass burning particles recorded during TRACE-P P3B Flight#10. J. Atmos. Chem., 51, 43–64.

    Article  Google Scholar 

  • Textor, C., and Coauthors, 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 1777–1813.

    Article  Google Scholar 

  • Turpin, B. J., and H.-J. Lim, 2001: Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol., 35, 602–610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hoon Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, C.H., Lee, J.Y., Um, J. et al. Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea. Asia-Pacific J Atmos Sci 54, 19–32 (2018). https://doi.org/10.1007/s13143-017-0053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0053-0

Key words

Navigation