Skip to main content
Log in

A hail climatology in Mongolia

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The temporal and spatial characteristics of hail frequency in Mongolia are examined using the hail observation data from 61 meteorological observatories for 1984-2013. The annual number of hail days averaged over all observatories and the entire period is 0.74. It exhibits a decreasing trend, particularly since 1993 with a rate of decrease of 0.214 per decade. Hail occurrence is concentrated in summer, with 72% of the total hail days occurring in June, July, and August. Moreover, hail occurrence is concentrated in the afternoon and early evening, with 89% of the total hail events occurring between 1200 and 2100 local standard time (LST). Spatially, observatories where relatively frequent hail events are observed are concentrated in the north central region where almost all of the land is mountainous or covered by grassland, whereas relatively less frequent hail events are observed in the southern desert region. The relationship between hail frequency and thermodynamic factors including the convective available potential energy (CAPE), the temperature lapse rate between 700 and 500 hPa, the water vapor mixing ratio averaged over the lowest 100 hPa layer, and the freezing-level height is examined using the ERA-Interim reanalysis data. It is found that in summer, CAPE and the low-level water vapor mixing ratio are larger on hail days than on all days, but there is no clear relationship between hail frequency and the 700-500 hPa temperature lapse rate. It is also found that annually, CAPE and the low-level water vapor mixing ratio decrease, while the freezing-level height increases, which seems to be responsible for the annually decreasing trend of hail frequency in Mongolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226–243, doi:10.1002/2014MS000397.

    Article  Google Scholar 

  • Baldi, M., V. Ciardini, J. D. Dalu, T. de Filippis, G. Maracchi, and G. Dalu, 2014: Hail occurrence in Italy: Towards a national database and climatology. Atmos. Res., 138, 268–277, doi:10.1016/j.atmosres.2013.11.012.

    Article  Google Scholar 

  • Berthet, C., J. Dessens, and J. L. Sanchez, 2011: Regional and yearly variations of hail frequency and intensity in France. Atmos. Res., 100, 391–400, doi:10.1016/j.atmosres.2010.10.008.

    Article  Google Scholar 

  • Burcea, C., R. Cic, and R. Bojariu, 2016: Hail climatology and trends in Romania: 1961-2014. Mon. Wea. Rev., 144, 4289–4299, doi:10.1175/ MWR-D-16-0126.1.

    Article  Google Scholar 

  • Cao, Z., 2008: Severe hail frequency over Ontario, Canada: Recent trend and variability. Geophys. Res. Lett., 35, L14803, doi:10.1029/2008-GL034888.

    Article  Google Scholar 

  • Changnon, S. A., 1977: The scales of hail. J. Appl. Meteor., 16, 626–648.

    Article  Google Scholar 

  • Changnon, S. A., and D. Changnon, 2000: Long-term fluctuations in hail incidences in the United States. J. Climate, 13, 658–664.

    Article  Google Scholar 

  • Dagvadorj, D., and Coauthors, 2009: Mongolia Assessment Report on Climate Change 2009. MARCC 2009, 228 pp.

    Google Scholar 

  • Dessens, J., 1986: Hail in southwestern France. I: Hailfall characteristics and hailstorm environment. J. Climate Appl. Meteor., 25, 35–47.

    Google Scholar 

  • Doljinsuren, M., and C. Gomes, 2015: Lightning incidents in Mongolia. Geomat., Nat. Hazards Ris., 6, 686–701, doi:10.1080/19475705.2015.1020888.

    Article  Google Scholar 

  • Etkin, D., and S. E. Brun, 1999: A note on Canada’s hail climatology: 1977-1993. Int. J. Climatol., 19, 1357–1373.

    Article  Google Scholar 

  • Farnell, C., and M. D. C. Llasat Botija, 2013: Proposal of three thermodynamic variables to discriminate between storms associated with hail and storms with intense rainfall in Catalonia. Tethys, 10, 25–34, doi: 10.3369/tethys.2013.10.03.

    Google Scholar 

  • Giaiotti, D., S. Nordio, and F. Stel, 2003: The climatology of hail in the plain of Friuli Venezia Giulia. Atmos. Res., 67, 247–259.

    Article  Google Scholar 

  • Goulden, C. E., J. Mead, R. Horwitz, M. Goulden, B. Nandintsetseg, S. McCormick, B. Boldgiv, and P. S. Petraitis, 2016: Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia. Climatic Change, 136, 281–295, doi:10.1007/s10584-016-1614-4.

    Article  Google Scholar 

  • Groenemeijer, P. H., and A. van Delden, 2007: Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos. Res., 83, 473–487.

    Article  Google Scholar 

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 159–254.

    Google Scholar 

  • Houze, R. A., 2014: Cloud Dynamics, 2nd ed. Academic Press, 432 pp.

    Google Scholar 

  • Jambaajamts, B., 1989: Climate of Mongolia. Ulsiin hevlel Publishers, 271 pp (in Mongolian).

    Google Scholar 

  • Jin, H.-G., H. Lee, J. Lkhamjav, and J.-J. Baik, 2017: A hail climatology in South Korea. Atmos. Res., 188, 90–99, doi:10.1016/j.atmosres.2016.12.013.

    Article  Google Scholar 

  • Kahraman, A., S. Tilev-Tanriover, M. Kadioglu, D. M. Schultz, and P. M. Markowski, 2016: Severe hail climatology of Turkey. Mon. Wea. Rev., 144, 337–346, doi:10.1175/MWR-D-15-0337.1.

    Article  Google Scholar 

  • Kim, C., and X. Ni, 2015: Climatology of hail in North Korea. Acta Sci. Nat. Univ. Pekin., 51, 437–443 (in Chinese with English abstract).

    Google Scholar 

  • Kotinis-Zambakas, S. R., 1989: Average spatial patterns of hail days in Greece. J. Climate, 2, 508–511.

    Article  Google Scholar 

  • Kunz, M., J. Sander, and C. Kottmeier, 2009: Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany. Int. J. Climatol., 29, 2283–2297.

    Article  Google Scholar 

  • Li, M., Q. Zhang, and F. Zhang, 2016: Hail day frequency trends and associated atmospheric circulation patterns over China during 1960-2012. J. Climate, 29, 7027–7044, doi:10.1175/JCLI-D-15-0500.1.

    Article  Google Scholar 

  • Mezher, R. N., M. Doyle, and V. Barros, 2012: Climatology of hail in Argentina. Atmos. Res., 114, 70–82, doi:10.1016/j.atmosres.2012.05.020.

    Article  Google Scholar 

  • Nisi, L., O. Martius, A. Hering, M. Kunz, and U. Germann, 2016: Spatial and temporal distribution of hailstorms in the Alpine region: A longterm, high resolution, radar-based analysis. Quart. J. Roy. Meteor. Soc., 142, 1590–1604, doi:10.1002/qj.2771.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic Publishers, 954 pp.

    Google Scholar 

  • Punge, H. J., and M. Kunz, 2016: Hail observations and hailstorm characteristics in Europe: A review. Atmos. Res., 176, 159–184, doi: 10.1016/j.atmosres.2016.02.012.

    Article  Google Scholar 

  • Schaefer, J. T., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over the contiguous United States. Preprints, The 14th Conf. on Applied Climatology, Seattle, Amer. Meteor. Soc., 7 pp.

    Google Scholar 

  • Schuster, S. S., R. J. Blong, and M. S. Speer, 2005: A hail climatology of the Greater Sydney area and New South Wales, Australia. Int. J. Climatol., 25, 1633–1650.

    Article  Google Scholar 

  • Simeonov, P., L. Bocheva, and T. Marinova, 2009: Severe convective storms phenomena occurrence during the warm half of the year in Bulgaria (1961-2006). Atmos. Res., 93, 498–505.

    Article  Google Scholar 

  • Sioutas, M., T. Meaden, and J. D. C. Webb, 2009: Hail frequency, distribution, and intensity in northern Greece. Atmos. Res., 93, 526–533.

    Article  Google Scholar 

  • Suwala, K., and E. Bednorz, 2013: Climatology of hail in central Europe. Qua. Geo., 32, 99–110, doi:10.2478/quageo-2013-0025.

    Google Scholar 

  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 60–73, doi:10.1007/s40641-015-0006-6.

    Article  Google Scholar 

  • Tuovinen, J.-P., A.-J. Punkka, J. Rauhala, H. Hohti, and D. M. Schultz, 2009: Climatology of severe hail in Finland: 1930-2006. Mon. Wea. Rev., 137, 2238–2249.

    Article  Google Scholar 

  • Vinet, F., 2001: Climatology of hail in France. Atmos. Res., 56, 309–323.

    Article  Google Scholar 

  • Webb, J. D. C., D. M. Elsom, and D. J. Reynolds, 2001: Climatology of severe hailstorms in Great Britain. Atmos. Res., 56, 291–308.

    Article  Google Scholar 

  • Xie, B., Q. Zhang, and Y. Wang, 2008: Trends in hail in China during 1960-2005. Geophys. Res. Lett., 35, L13801, doi:10.1029/2008GL-034067.

    Article  Google Scholar 

  • Zhang, C., Q. Zhang, and Y. Wang, 2008: Climatology of hail in China: 1961-2005. J. Appl. Meteor. Climatol., 47, 795–804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Gyul Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lkhamjav, J., Jin, HG., Lee, H. et al. A hail climatology in Mongolia. Asia-Pacific J Atmos Sci 53, 501–509 (2017). https://doi.org/10.1007/s13143-017-0052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0052-1

Keywords

Navigation