Skip to main content

Advertisement

Log in

Reverse Warburg Effect-Related Mitochondrial Activity and 18F-FDG Uptake in Invasive Ductal Carcinoma

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the relationship between fluorine-18 fluoro-2-deoxy-glucose (18F-FDG) uptake and mitochondrial activity in cancer cells and investigated the prognostic implications of this relationship in patients with invasive ductal carcinoma of the breast (IDCB).

Methods

One hundred forty-six patients with primary IDCB who underwent preoperative 18F-FDG PET/CT followed by curative surgical resection were enrolled in the current study. Mitochondrial activity of cancer cells was assessed based on translocase of outer mitochondrial membrane 20 (TOMM20) expression and cytochrome C oxidase (COX) activity. A Pearson’s correlation analysis was used to assess the relationship between the maximum standardized uptake value of the primary tumour (pSUVmax) and mitochondrial activity. Clinicopathological factors, including pSUVmax, histological grade, oestrogen receptor (ER), progesterone receptor (PR), and TOMM20 expression; and COX activity, were assessed for the prediction of disease-free survival (DFS) using the Kaplan–Meier method and Cox proportional hazards model.

Results

Fourteen of the 146 subjects (9.6%) showed tumour recurrence. There was a significant positive correlation between 18F-FDG uptake and the mitochondrial activity of cancer cells in patients with IDCB, and increased 18F-FDG uptake and mitochondrial activity were significantly associated with a shorter DFS. Additionally, results from the receiver-operating curve analysis demonstrated that the cut-off values of pSUVmax, TOMM20 expression, and COX activity for the prediction of DFS were 7.76, 4, and 5, respectively. Further, results from the univariate analysis revealed that pSUVmax, TOMM20 expression, PR status, and histologic grade were significantly associated with DFS; however, the multivariate analysis revealed that only pSUVmax was associated with DFS (HR, 6.51; 95% CI, 1.91, 22.20; P = 0.003).

Conclusions

The assessment of preoperative 18F-FDG uptake and post-surgical mitochondrial activity may be used for the prediction of DFS in patients with IDCB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    PubMed  Google Scholar 

  2. Eheman CR, Shaw KM, Ryerson AB, Miller JW, Ajani UA, White MC. The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999-2004. Cancer Epidemiol Biomark Prev. 2009;18:1763–9.

    Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A, et al. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle. 2013;12:1371–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Warburg O. The metabolism of carcinoma cells. Cancer Res. 1925;9:148–63.

    CAS  Google Scholar 

  6. Grover-McKay M, Walsh SA, Seftor EA, Thomas PA, Hendrix MJ. Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res. 1998;4:115–20.

    CAS  PubMed  Google Scholar 

  7. Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep. 2016;5:289–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    CAS  PubMed  Google Scholar 

  9. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001.

    CAS  PubMed  Google Scholar 

  10. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle. 2011;10:2504–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huebbers CU, Adam AC, Preuss SF, Schiffer T, Schilder S, Guntinas-Lichius O, et al. High glucose uptake unexpectedly is accompanied by high levels of the mitochondrial ß-F1-ATPase subunit in head and neck squamous cell carcinoma. Oncotarget. 2015;6:36172–84.

    PubMed  PubMed Central  Google Scholar 

  12. Koit A, Shevchuk I, Ounpuu L, Klepinin A, Chekulayev V, Timohhina N, et al. Mitochondrial respiration in human colorectal and breast cancer clinical material is regulated differently. Oxidative Med Cell Longev. 2017;2017:1372640.

    Google Scholar 

  13. Caresia Aroztegui AP, García Vicente AM, Alvarez Ruiz S, Delgado Bolton RC, Orcajo Rincon J, Garcia Garzon JR, et al. 18F-FDG PET/CT in breast cancer: evidence-based recommendations in initial staging. Tumour Biol. 2017;39:1010428317728285.

    PubMed  Google Scholar 

  14. Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K, et al. Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr. 2012;44:539–58.

    CAS  PubMed  Google Scholar 

  15. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle. 2011;10:4047–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011;13:213.

    PubMed  PubMed Central  Google Scholar 

  17. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, Philp NJ, Lin Z, Gandara R, et al. Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle. 2012;11:1108–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson JM, Cotzia P, Fratamico R, Mikkilineni L, Chen J, Colombo D, et al. MCT1 in invasive ductal carcinoma: monocarboxylate metabolism and aggressive breast cancer. Front Cell Dev Biol. 2017;5:27.

    PubMed  PubMed Central  Google Scholar 

  19. Kampf C, Olsson I, Ryberg U, Sjöstedt E, Pontén F. Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp. 2012. https://doi.org/10.3791/3620.

  20. Jeong YJ, Jung JW, Cho YY, Park SH, Oh HK, Kang S. Correlation of hypoxia inducible transcription factor in breast cancer and SUVmax of F-18 FDG PET/CT. Nucl Med Rev Cent East Eur. 2017;20:32–8.

    PubMed  Google Scholar 

  21. Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, et al. Members of the Cancer Committee, College of American Pathologies. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 2009;133:1515–38.

    PubMed  Google Scholar 

  22. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200.

    PubMed  PubMed Central  Google Scholar 

  23. Danhier P, Banski P, Payen VL, Grasso D, Ippolito L, Sonveaux P, et al. Cancer metabolism in space and time: beyond the Warburg effect. Biochim Biophys Acta Bioenerg. 2017;1858:556–72.

    CAS  PubMed  Google Scholar 

  24. Fu Y, Liu S, Yin S, Niu W, Xiong W, Tan M, et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017;8:57813–25.

    PubMed  PubMed Central  Google Scholar 

  25. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R, et al. Mitochondria “fuel” breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle. 2012;11:4390–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Power surge: supporting cells “fuel” cancer cell mitochondria. Cell Metab. 2012;15:4–5.

    CAS  PubMed  Google Scholar 

  27. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22:547–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. DeNicola GM, Cantley LC. Cancer’s fuel choice: new flavors for a picky eater. Mol Cell. 2015;60:514–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164:681–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118:3930–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 2011;10:1772–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest. 2013;123:3685–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem. 2006;281:9030–7.

    CAS  PubMed  Google Scholar 

  34. Bovenzi CD, Hamilton J, Tassone P, Johnson J, Cognetti DM, Luginbuhl A, et al. Prognostic indications of elevated MCT4 and CD147 across cancer types: a meta-analysis. Biomed Res Int. 2015;2015:242437.

    PubMed  PubMed Central  Google Scholar 

  35. Bellance N, Lestienne P, Rossignol R. Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci (Landmark Ed). 2009;14:4015–34.

    Google Scholar 

  36. Wurm CA, Neumann D, Lauterbach MA, Harke B, Egner A, Hell SW, et al. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc Natl Acad Sci U S A. 2011;108:13546–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ekmekcioglu O, Aliyev A, Yilmaz S, Arslan E, Kaya R, Kocael P, et al. Correlation of 18F-fluorodeoxyglucose uptake with histopathological prognostic factors in breast carcinoma. Nucl Med Commun. 2013;34:1055–67.

    CAS  PubMed  Google Scholar 

  38. Ueda S, Tsuda H, Asakawa H, Shigekawa T, Fukatsu K, Kondo N, et al. Clinicopathological and prognostic relevance of uptake level using 18F-fluorodeoxyglucose positron emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in primary breast cancer. Jpn J Clin Oncol. 2008;38:250–8.

    PubMed  Google Scholar 

  39. García Vicente AM, Soriano Castrejón A, León Martín A, Chacón López-Muñiz I, Muñoz Madero V, Muñoz Sánchez Mdel M, et al. Molecular subtypes of breast cancer: metabolic correlation with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:1304–11.

    PubMed  Google Scholar 

  40. Kadoya T, Aogi K, Kiyoto S, Masumoto N, Sugawara Y, Okada M. Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: a multi-institute study. Breast Cancer Res Treat. 2013;141:269–75.

    PubMed  PubMed Central  Google Scholar 

  41. Aogi K, Kadoya T, Sugawara Y, Kiyoto S, Shigematsu H, Masumoto N, et al. Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer. Breast Cancer Res Treat. 2015;150:209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. García Vicente AM, Soriano Castrejón A, López-Fidalgo JF, Amo-Salas M, Muñoz Sanchez Mdel M, Álvarez Cabellos R, et al. Basal 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography as a prognostic biomarker in patients with locally advanced breast cancer. Eur J Nucl Med Mol Imaging. 2015;42:1804–13.

    PubMed  Google Scholar 

  43. Groheux D, Giacchetti S, Delord M, de Roquancourt A, Merlet P, Hamy AS, et al. Prognostic impact of 18F-FDG PET/CT staging and of pathological response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2015;42:377–85.

    CAS  PubMed  Google Scholar 

  44. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungmin Kang.

Ethics declarations

Conflict of Interest

Byung Wook Choi, Young Ju Jeong, Sung Hwan Park, Hoon Kyu Oh, and Sungmin Kang declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed Consent

The institutional review board of our institute approved this retrospective study, and the requirement to obtain informed consent was waived.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, B.W., Jeong, Y.J., Park, S.H. et al. Reverse Warburg Effect-Related Mitochondrial Activity and 18F-FDG Uptake in Invasive Ductal Carcinoma. Nucl Med Mol Imaging 53, 396–405 (2019). https://doi.org/10.1007/s13139-019-00613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-019-00613-x

Keywords

Navigation