Skip to main content
Log in

The impact of surface waves on the mixing of the upper ocean

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the“Coriolis-Stokes forcing” and the“Stokes-Vortex force” are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardhuin F, Rascle N, Belibassakis K A. 2008. Explicit wave averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20: 35–60, doi:10.1016/j.ocemod.2007.07.001

    Article  Google Scholar 

  • Bi Fan, Wu Kejian, Zhang Yuming. 2012. The effect of Stokes drift on Ekman transport in the open sea. Acta Oceanologica Sinica, 31(6): 12–18, doi: 10.1007/s13131-012-0249-1

    Article  Google Scholar 

  • Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal oceancirculation model, in three-dimensional coastal ocean models. Coastal and Estuarine Study, 4: 1–16

    Article  Google Scholar 

  • Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 24(12): 2546–2559

    Article  Google Scholar 

  • Craik A D. 1977. The generation of Langmuir circulation by an instability mechanism. Journal of Fluid Mechanics, 125: 37–52

    Article  Google Scholar 

  • Craik A D, Leibovich S. 1976. A rational model for Langmuir circulations. Journal of Fluid Mechanics, 73(3): 401–426

    Article  Google Scholar 

  • Hasselmann K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics, 1(3/4): 463–502

    Article  Google Scholar 

  • Holm D D. 1996. The ideal Craik-Leibovich equations. Physica D, 98(2–4): 415–441

    Article  Google Scholar 

  • Jenkins A D. 1986. A theory for steady and variable wind- and waveinduced currents. Journal of Physical Oceanography, 16(8): 1370–1377

    Article  Google Scholar 

  • Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12): 25235–25266

    Article  Google Scholar 

  • Kantha L H, C A Clayson. 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling, 6(2): 101–124

    Article  Google Scholar 

  • Lane E M, Restrepo J M, McWilliams J C. 2007. Wave-current interaction: a comparison of radiation-stress and vortex-force representations. Journal of Physical Oceanography, 37(5): 1122–1141

    Article  Google Scholar 

  • Langmuir I. 1983. Surface motion of water induced by wind. Science, 87: 119–123

    Article  Google Scholar 

  • Lewis D M, Belcher S E. 2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dynamics of Atmospheres and Oceans, 37(4): 313–351

    Article  Google Scholar 

  • Li M, Garrett C, 1997. Mixed-layer deepening due to Langmuir circulation. Journal of Physical Oceanography, 27(1): 121–132

    Article  Google Scholar 

  • Li M, Garrett C, Skyllingstad E. 2005. A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I, 52(2): 259–278

    Article  Google Scholar 

  • Li Shuang, Song Jinbao, Fan Wei. 2013. Effect of Langmuir circulation on upper ocean mixing in the South China Sea. Acta Oceanologica Sinica, 32(3): 28–33, doi: 10.1007/s13131-013-0285-5

    Article  Google Scholar 

  • Longuet-Higgins, Stewart R W., 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8: 565–583

    Article  Google Scholar 

  • Longuet-Higgins, Stewart R W. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10: 529–549

    Article  Google Scholar 

  • Mellor George, Blumberg Alan. 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34(3): 693–698

    Article  Google Scholar 

  • Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7): 1791–1806

    Article  Google Scholar 

  • Mellor G L, Ymadaa T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20(4): 851–875

    Article  Google Scholar 

  • McWillianms J C. 1996. Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28: 215–248

    Article  Google Scholar 

  • McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29(10): 2523–2540

    Article  Google Scholar 

  • McWilliams J C, Sullivan P P. 2001. Vertical mixing by Langmuir circulations. Spill and Science Technology, 6(3–4): 225–238

    Google Scholar 

  • McWillianms J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334: 1–30

    Article  Google Scholar 

  • McWilliams J C, Testrepo J M, Lane E M. 2004. An asymptotic theory for the ocean. Journal of Fluid Mechanics, 511: 135–178

    Article  Google Scholar 

  • Newberger P A, Allen J S. 2007a. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. Journal of Geophysical Research, 112: C08018, doi: 10.1029/2006JC003472

    Google Scholar 

  • Newberger P A, Allen J S. 2007b. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. Journal of Geophysical Research, 112: C08019. doi: 10.1029/2006JC003474

    Google Scholar 

  • Philips O M. 1977. The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press, 336

    Google Scholar 

  • Polton J A, Belcher S E. 2007. Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. Journal of Geophysical Research, 112: C09020, doi: 10.1029/2007JC004205

    Article  Google Scholar 

  • Polton J A, Lewis D M, Belcher S E. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. Journal of Physical Oceanography, 35(4): 444–457

    Article  Google Scholar 

  • Skyllingstad E D, Denbo D W. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. Journal of Geophysical Research, 100(C5): 8501–8522

    Article  Google Scholar 

  • Smith J. 1998. Evolution of Langmuir circulation during a storm. Journal of Geophysical Research, 103(C6): 12649–12668

    Article  Google Scholar 

  • Smith J A. 2006. Wave-current interactions in finite-depth. Journal of Physical Oceanography, 36(7): 1403–1419

    Article  Google Scholar 

  • Smyth W D, Skyllingstad E D, Crawford G B, et al. 2002. Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dynamics, 52(3), 105–115

    Article  Google Scholar 

  • Sullivan P P, McWilliams J C. 2010. Dynamics of winds and currents coupled to surface waves. Annual Review of Fluid Mechanics, 42: 19–42

    Article  Google Scholar 

  • Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405–452

    Article  Google Scholar 

  • Stokes G G. 1984. On the theory of oscillatory waves. Trans Cambridge Philosophical Society, 8: 441–455

    Google Scholar 

  • Uchiyama Y, McWilliams J C. 2008. Infragravity waves in the deep ocean: generation, propagation, and seismic hum excitation. Journal of Geophysical Research, 113: C07029. doi:10.1029/2007JC004562

    Article  Google Scholar 

  • Uchiyama Y, McWilliams J C, Restrepo J M. 2009. Wave-current interaction in nearshore shear instability analyzed with a vortex-force formalism. Journal of Geophysical Research, 114: C06021, doi: 10.1029/2008JC005135

    Article  Google Scholar 

  • Weber J E. 1983. Steady wind- and wave-induced currents in the open ocean. Journal of Physical Oceanography, 13(3): 524–530

    Article  Google Scholar 

  • Weber J E. 2003. Wave-induced mass transport in the oceanic surface layer. Journal of Physical Oceanography, 33(12): 2527–2533

    Article  Google Scholar 

  • Wessel P, Smith W H F. 1996. A global self-consistent hierarchical, high resolution shoreline database. Journal of Geophysical Research, 101(B4): 8741–8743

    Article  Google Scholar 

  • Wu K J, Liu B. 2008. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. Journal of Geophysical Research, 113: C10002, doi: 10. 1029/2007JC004579

    Article  Google Scholar 

  • Wu K J, Yang Z L, Liu B, et al. 2008. Wave energy input into the Ekman layer. Science in China Series D: Earth Sciences, 51(1): 134–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejian Wu.

Additional information

Foundation item: The Open Fund of the Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China (Fundamental Research Funds for the Central Universities) under contract No. 201362045; the Open Fund of the Key Laboratory of Digital Ocean, State Oceanic Administration of China under contract No. KLDO201406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, K., Xia, C. et al. The impact of surface waves on the mixing of the upper ocean. Acta Oceanol. Sin. 33, 32–39 (2014). https://doi.org/10.1007/s13131-014-0514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-014-0514-6

Key words

Navigation