Skip to main content
Log in

Genetic variation of Laminaria japonica (Phaeophyta) populations in China as revealed by RAPD markers

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

For the population genetics analysis of the naturally grown brown seaweed Laminaria japonica (Laminariales, Phaeophyta) sampled from Dalian, Yantai, Weihai, Rongcheng and Qingdao in China, ten primers were employed to produce 88 bands as revealed by randomly amplified polymorphic DNA (RAPD) markers, and all these bands were polymorphic. According to these band patterns, there were 94 distinct phenotypes occurred in 100 samples indicating the high heterozygosity of this kelp. Dalian population samples showed the highest percentage of polymorphism (71.67%), and also the higher diversity estimated on the basis of the Shannon’s index (8.498), suggesting that this population could be chosen as the best resource for genetic breeding. The highest diversity of Yantai population possibly resulted from the introduction of L. longissima used for interspecific cross breeding with L. japonica cultivated in China. From Dalian southwards to Qingdao, the genetic variation of the five populations became less with a decrease in latitude, possibly due to the natural selection especially of high temperature. The genetic distance (ΦST values) of the five populations was a little significantly correlated with the geographical distance (r=0.496) at P=0.05 by Mantel’s test. Weihai, Rongcheng and Yantai populations were closely grouped genetically together by Neighbor-joining cluster analysis probably in that the dispersal of the kelp by propagules more easily occurring in the range of relatively short distance. The analysis of molecular variance (AMOVA) also demonstrated that the relatively higher variation occurred among populations (71.49%) at an extremely significant level (P<0.000 1). All these evidence showed that there was a relatively distinct genetic differentiation among the sampled kelp populations, and L. japonica grown in China was also rather heterozygous in heredity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong J, Gibbs A, Peakall R, et al. 1994. The RAPDistance Package, http://life.anu.edu.au/molecular/software/rapd.html

  • Billot C, Boury S, Benet H, et al. 1999. Development of RAPD markers for parentage analysis in Lamnaria digitata. Bot Mar, 42(3): 307–314

    Article  Google Scholar 

  • Bohonak A J. 1999. Dispersal, gene flow, and population structure. Quart Rev Biol, 74(1): 21–45

    Article  Google Scholar 

  • Breeman A M. 1988. Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters, 42(2): 199–241

    Article  Google Scholar 

  • Coyer J A, Olsen J L, Stam W T. 1997. Genetic variability and spatial separation in the sea palm kelp Postelsia palmaeformis (Phaeophyceae) as assessed with M13 fingerprints and RAPDs. J Phycol, 33(4):561–568

    Article  Google Scholar 

  • Coyer J A, Robertson D L, Alberte R S. 1994. Genetic variability within a population and between diploid/haploid tissue of Macrocystis pyrifera (Phaeophyceae). J Phycol, 30(3): 545–552

    Article  Google Scholar 

  • Davison I R, Davison J O. 1987. The effect of growth temperature on enzyme activities in the brown alga Laminaria saccharina. Br Phycol J, 22(1): 77–87

    Article  Google Scholar 

  • Editorial Board for Marine Atlas. 1993. Marine Atlas of Bohai Sea, Yellow Sea, East China Sea: Hydrology. Beijing: China Ocean Press

    Google Scholar 

  • Engelen A H, Olsen J L, Breeman A M, et al. 2001. Genetic differentiation in Sargassum polyceratium (Fucales: Phaeophyceae) around the island of Curacao (Netherlands Antilles). Mar Biol, 139(2): 267–277

    Article  Google Scholar 

  • Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131(2):479–491

    Google Scholar 

  • FAO. 2006. FAO Yearbook. Fishery Statistics. Aquaculture Production. Food and Agriculture Organization of the United Nations, Rome, 98(2): 1–199

    Google Scholar 

  • Fang Tsungci. 1983. A summary of the genetic studies of Laminaria japonica in China. In: Tseng C K, ed. Proceedings of the Joint China-U S Phycology Symposium. Beijing: Science Press, 123–136

    Google Scholar 

  • He Yingjun, Zou Yuping, Wang Xiaodong, et al. 2003. Assessing the germplasm of Laminaria (Phaeophyceae) with random amplified polymorphic DNA (RAPD) method. Chin J Oceanol Limnol, 21(2):141–148

    Article  Google Scholar 

  • Hu Yuanjie, Zhou Zhigang. 2001a. Extraction of RAPDfriendly DNA from Laminaria japonica (Phaeophyta) after enzymatic dissociation of the frozen sporophyte tissues. J Appl Phycol, 13(5): 415–422

    Article  Google Scholar 

  • Hu Yuanjie, Zhou Zhigang. 2001b. Optimization of random amplified reaction conditions for Laminaria japonica (Phaeophyta) sporophyte DNA. J Shanghai Fish Univ, 10(3): 193–198

    Google Scholar 

  • Kain J M. 1979. A view of the genus Laminaria. Oceanogr Mar Biol Ann Rev, 17: 101–161

    Google Scholar 

  • Li Hongji. 1996. Some Problems in Cultivation of Kelp in China. Beijing: China Ocean Press

    Google Scholar 

  • Liedloff A. 1999. Mantel Nonparametric Test Calculator, ver 2.0, http://www.sci.qut.edu.au/nrs/software.htm

  • Lüning K. 1984. Temperature tolerance and biogeography of seaweeds: the marine algal flora of Helgoland (North Sea) as an example. Helgoländer Meeresunters, 38(2): 305–317

    Article  Google Scholar 

  • Lynch M, Milligan B G. 1994. Analysis of population genetic structure with RAPD markers. Mol Ecol, 3(2): 91–99

    Article  Google Scholar 

  • Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res, 27(2):209–220

    Google Scholar 

  • Mathieson A C, Norton T A, Neushul M. 1981. The taxonomic implications of genetic and environmentally induced variations in seaweed morphology. Bot Rev, 47(3): 313–347

    Article  Google Scholar 

  • Martínez E A, Cárdenas L, Pinto R. 2003. Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J Phycol, 39(3): 504–508

    Article  Google Scholar 

  • Mayes C, Saunders G W, Tan I H, et al. 1992. DNA extraction methods for kelp (Laminariales) tissue. J Phycol, 28(5): 712–716

    Article  Google Scholar 

  • Mejjad M, Vedel F, Ducreux G. 1994. Improvement of DNA preparation and of PCR cycling in RAPD analysis of marine macroalgae. Plant Mol Biol Rep, 12(2): 101–105

    Article  Google Scholar 

  • Miller K A, Olsen J L, Stam W T. 2000. Genetic divergence correlates with morphological and ecological subdivision in the deep-water elk kelp, Pelagophycus porra (Phaeophyceae). J Phycol, 36(5): 862–870

    Google Scholar 

  • Neefus C D, Allen B P, Baldwin H P, et al. 1993. An examination of the population genetics of Laminaria and other brown algae in the laminariales using starch gel electrophoresis. Hydrobiologia, 260/261(1): 67–79

    Article  Google Scholar 

  • Nei M, Li W H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 76(10): 5269–5273

    Article  Google Scholar 

  • Park J W, Cho Y C, Nam B-H, et al. 1998. RAPD identification of genetic variation in seaweed Hizikia fusiformis (Fucales, Phaeophyta). J Mar Biotechnol, 6(1): 62–64

    Google Scholar 

  • Parker P G, Snow A A, Schug M D, et al. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology, 79(2): 361–382

    Google Scholar 

  • Patwary M U, van der Meer J P. 1992. Genetics and breeding of cultivated seaweeds. Korean J Phycol, 7(2): 281–318

    Google Scholar 

  • Reed D C, Amsler C D, Ebeling A W. 1992. Dispersal in kelps: factors affecting spore swimming and competency. Ecology, 73(5): 1577–1585

    Article  Google Scholar 

  • Rice E L, Crowden R K. 1987. An improved method for the extraction and electrophoresis of proteins and active enzymes from fucalean macroalgae (Phaeophyta). Phycologia, 26(2): 235–246

    Article  Google Scholar 

  • Rinde E, Sjøtun K. 2005. Demographic variation in the kelp Laminaria hyperborea along a latitudinal gradient. Mar Biol, 146(6): 1051–1062

    Article  Google Scholar 

  • Russell G. 1986. Variation and natural selection in marine macroalgae. Oceanogr Mar Biol Ann Rev, 24: 309–377

    Google Scholar 

  • Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. (A8.19–8.21). New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Santelices B. 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Ann Rev, 28: 177–276

    Google Scholar 

  • Schiel D R, Foster M S. 1986. The structure of subtidal algal stands in temperate waters. Oceanogr Mar Biol Ann Rev, 24: 265–307

    Google Scholar 

  • Silva E P, Russo C A M. 2000. Techniques and statistical data analysis in molecular population genetics. Hydrobiologia, 420(1): 119–135

    Article  Google Scholar 

  • Stewart Jr C N, Excoffier L. 1996. Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American Cranberry). J Evol Biol, 9(2): 153–171

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, et al. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8): 1596–1599

    Article  Google Scholar 

  • Tseng C K. 1981. Commercial cultivation. In: Lobban C S, Wynne M J, eds. Botanical Monographs 17: The Biology of Seaweeds. Oxford: Blackwell Scientific Publications, 680–725

    Google Scholar 

  • Tseng C K. 2001. Algal biotechnology industries and research activities in China. J Appl Phycol, 13(4): 375–380

    Article  Google Scholar 

  • Tseng Chengkui, Wu Chaoyuan, Ren Guozhong. 1962. The influence of temperature on the growth and development of the haidai (Laminaria japonica) gametophytes. Oceanol Limnol Sinica, 4(1–2): 22–28

    Google Scholar 

  • Tseng Chengkui, Wu Chaoyuan, Sun Guoyu. 1957. The effect of temperature on the growth and development of haidai (Laminaria japonica Aresch.). Acta Bot Sinica, 6(2): 103–130

    Google Scholar 

  • van den Hoek C. 1987. The possible significance of long-range dispersal for the biogeography of seaweeds. Helgoländer Meeresunters, 41(3): 261–272

    Article  Google Scholar 

  • van Oppen M J H, Klerk H, de Graaf M, et al. 1996. Assessing the limits of random amplified polymorphic DNAs (RAPDs) in seaweed biogeography. J Phycol, 32(3): 433–444

    Article  Google Scholar 

  • Wang Gaoge, Li Yuhui, Xia Peng, et al. 2005. A simple method for DNA extraction from sporophyte in the brown alga Laminaria japonica. J Appl Phycol, 17(1): 75–79

    Article  Google Scholar 

  • Wang Xiuliang, Yang Yingxia, Cong Yizhou, et al. 2004. DNA fingerprinting of selected Laminaria (Phaeophyta) gametophytes by RAPD markers. Aquaculture, 238(1–4): 143–153

    Article  Google Scholar 

  • Weising K, Nybom H, Wolff K, et al. 1995. DNA Fingerprinting in Plants and Fungi. Boca Raton: CRC Press Inc

    Google Scholar 

  • Williams J G K, Hanagey M K, Rafalski J A, et al. 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol, 218: 704–740

    Article  Google Scholar 

  • Wu Chaoyuan, Lin Guangheng. 1987. Progress in the genetics and breeding of economic seaweeds in China. Hydrobiologia, 151/152(1): 57–61

    Article  Google Scholar 

  • Yotsukura N, Kawai T, Motomura T, et al. 2001. Random amplified polymorphic DNA markers for three Japanses laminarian species. Fish Sci, 67(5): 857–862

    Article  Google Scholar 

  • Zhang Quansheng, Tang Xuexi, Cong Yizhou, et al. 2007. Breeding of an elite Laminaria variety 901 through inter-specific gametophyte crossing. J Appl Phycol, 19(4): 303–311

    Article  Google Scholar 

  • Zhao Fengjuan, Liu Fuli, Liu Jidong, et al. 2008. Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. J Appl Phycol, 20(2): 191–198

    Article  Google Scholar 

  • Zhou Zhigang, Shi Xizhi, Hu Yuanjie, et al. 2003. Genetic relationship among the brown seaweed Laminaria longissima and various cultivars of L. japonica in China estimated by isozyme and RAPD markers. J Fish Sci China, 10(6): 474–480

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zhou.

Additional information

Foundation item: The National Natural Science Foundation of China under grant Nos 39800105 and 30471328; the Shanghai Development Foundation of Education under grant No. 98-SG-32; Key Discipline of Shanghai Municipal Education Commission (J50701); Scientific Research Foundation for Selection and Training Outstanding Young Teachers of Universities in Shanghai SSC09017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, Y., Hu, Y. & Zhou, Z. Genetic variation of Laminaria japonica (Phaeophyta) populations in China as revealed by RAPD markers. Acta Oceanol. Sin. 30, 103–112 (2011). https://doi.org/10.1007/s13131-011-0110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-011-0110-y

Key words

Navigation