Skip to main content
Log in

Effects of high-intensity interval training on gut microbiota profiles in 12 months’ old ICR mice

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

High-intensity interval training (HIT) has been proposed to exert multiple beneficial effects and positively affect gut microbiota, while how HIT would affect gut microbiota profiles in middle-aged mice remain unreported. Male ICR mice (12 months old) were divided into two groups, i.e., control group (CON) and HIT exercise group (HIT) given HIT running with a total of 7 weeks. Fecal content from the gut was collected eventually and gut microbiota were determined via 16S rRNA gene sequencing. Compared with CON group, mice from HIT group exhibited improved gut microbial diversity including increased Shannon index. Compared with the CON group, at the phylum level, the relative abundance of Proteobacteria and TM7 was significantly decreased and increased, respectively, from HIT group. At the genera level, HIT group had significantly increased Dorea and Dehalobacterium, while decreased Candidatus Arthromitus. PICRUSt analysis at level 2 and level 3 of KEGG pathways demonstrated that the cecal microbiota of mice from HIT group had significantly enriched pathways involved in carbohydrate metabolism, signal transduction mechanisms, and transcription, while reduced pathways involved in renal cell carcinoma, Huntington’s disease, pathways in cancer, various types of N-glycan biosynthesis, Alzheimer’s disease, glycan biosynthesis and metabolism, lipopolysaccharide biosynthesis, cell motility and secretion, and lipopolysaccharide biosynthesis proteins. In conclusion, HIT could dynamically alter gut microbiota profiles in middle-aged mice. How altered gut microbiota profiles could affect the biological functions of HIT need to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GI:

Gastrointestinal

HIT:

High-intensity interval exercise

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LefSe:

Linear discriminant analysis Effect Size

OTUs:

Operation taxonomic units

PICRUSt:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

QIIME:

Quantitative Insights Into Microbial Ecology

References

  1. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, White BA, Fryer JD & Woods JA (2015) Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol (1985) 118 1059–1066

  2. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA (2018) Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc 50:747–757

    Article  Google Scholar 

  3. Batacan RB, Fenning AS, Dalbo VJ, Scanlan AT, Duncan MJ, Moore RJ, Stanley D (2017) A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. J Appl Microbiol 122:1627–1638

    Article  CAS  Google Scholar 

  4. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, Capri M, Brigidi P, Candela M (2016) Gut microbiota and extreme longevity. Curr Biol 26:1480–1485

    Article  CAS  Google Scholar 

  5. Brahe LK, Le Chatelier E, Prifti E, Pons N, Kennedy S, Hansen T, Pedersen O, Astrup A, Ehrlich SD, Larsen LH (2015) Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes 5:e159

    Article  CAS  Google Scholar 

  6. Campbell WW, Kraus WE, Powell KE, Haskell WL, Janz KF, Jakicic JM, Troiano RP, Sprow K, Torres A, Piercy KL, Bartlett DB (2019) High-intensity interval training for cardiometabolic disease prevention. Med Sci Sports Exerc 51:1220–1226

    Article  Google Scholar 

  7. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M (2013) Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect 121:725–730

    Article  Google Scholar 

  8. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  Google Scholar 

  9. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63:1913–1920

    Article  CAS  Google Scholar 

  10. Dainese R, Serra J, Azpiroz F, Malagelada JR (2004) Effects of physical activity on intestinal gas transit and evacuation in healthy subjects. Am J Med 116:536–539

    Article  Google Scholar 

  11. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD (2016) High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 310:E982–E993

    Article  Google Scholar 

  12. Dohm MR, Hayes JP, Garland T Jr (1996) Quantitative genetics of sprint running speed and swimming endurance in laboratory house mice (Mus domesticus). Evolution 50:1688–1701

    PubMed  Google Scholar 

  13. Dun Y, Thomas RJ, Smith JR, Medina-Inojosa JR, Squires RW, Bonikowske AR, Huang H, Liu S, Olson TP (2019) High-intensity interval training improves metabolic syndrome and body composition in outpatient cardiac rehabilitation patients with myocardial infarction. Cardiovasc Diabetol 18:104

    Article  Google Scholar 

  14. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, Ahmadi-Vand Z, Marsden KR, Gibson DL (2016) Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4:42

    Article  Google Scholar 

  15. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 9:e92193

    Article  Google Scholar 

  16. Feng X, Uchida Y, Koch L, Britton S, Hu J, Lutrin D, Maze M (2017) Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome. Front Immunol 8:1768

    Article  Google Scholar 

  17. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A (2015) The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 117:817–824

    Article  CAS  Google Scholar 

  18. Gomes-Neto M, Duraes AR, Reis H, Neves VR, Martinez BP, Carvalho VO (2017) High-intensity interval training versus moderate-intensity continuous training on exercise capacity and quality of life in patients with coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol 24:1696–1707

    Article  Google Scholar 

  19. Hersoug LG, Moller P, Loft S (2016) Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 17:297–312

    Article  CAS  Google Scholar 

  20. Hoffmann C, Weigert C (2017) Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 7

  21. Houghton D, Stewart CJ, Stamp C, Nelson A, Aj Ami NJ, Petrosino JF, Wipat A, Trenell MI, Turnbull DM, Greaves LC (2018) Impact of age-related mitochondrial dysfunction and exercise on intestinal microbiota composition. J Gerontol A Biol Sci Med Sci 73:571–578

    Article  CAS  Google Scholar 

  22. Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, Ermund A, Boysen P, Bemark M, Sommer F, Backhed F, Hansson GC, Johansson ME (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16:164–177

    Article  CAS  Google Scholar 

  23. Kern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS, Ekstrom CT, Hansen T & Stallknecht B (2019) Structured exercise alters the gut microbiota in humans with overweight and obesity-a randomized controlled trial. Int J Obes (Lond)

  24. Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, Kim HB, Isaacson R (2017) Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol 27:2089–2093

    Article  Google Scholar 

  25. Kuehbacher T, Rehman A, Lepage P, Hellmig S, Folsch UR, Schreiber S, Ott SJ (2008) Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 57:1569–1576

    Article  CAS  Google Scholar 

  26. Lecuyer E, Rakotobe S, Lengline-Garnier H, Lebreton C, Picard M, Juste C, Fritzen R, Eberl G, McCoy KD, Macpherson AJ, Reynaud CA, Cerf-Bensussan N, Gaboriau-Routhiau V (2014) Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40:608–620

    Article  CAS  Google Scholar 

  27. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18:2

    Article  Google Scholar 

  28. Maillard F, Vazeille E, Sauvanet P, Sirvent P, Combaret L, Sourdrille A, Chavanelle V, Bonnet R, Otero YF, Delcros G, Barnich N, Boisseau N (2019) High intensity interval training promotes total and visceral fat mass loss in obese Zucker rats without modulating gut microbiota. PLoS One 14:e0214660

    Article  CAS  Google Scholar 

  29. Mika A, Van Treuren W, Gonzalez A, Herrera JJ, Knight R, Fleshner M (2015) Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One 10:e0125889

    Article  Google Scholar 

  30. Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, Viggiano A, Cibelli G, Chieffi S, Monda M, Messina G (2017) Exercise modifies the gut microbiota with positive health effects. Oxidative Med Cell Longev 2017:3831972

    Article  Google Scholar 

  31. Mugele H, Freitag N, Wilhelmi J, Yang Y, Cheng S, Bloch W, Schumann M (2019) High-intensity interval training in the therapy and aftercare of cancer patients: a systematic review with meta-analysis. J Cancer Surviv 13:205–223

    Article  Google Scholar 

  32. Mul JD, Stanford KI, Hirshman MF, Goodyear LJ (2015) Exercise and regulation of carbohydrate metabolism. Prog Mol Biol Transl Sci 135:17–37

    Article  CAS  Google Scholar 

  33. Munukka E, Ahtiainen JP, Puigbo P, Jalkanen S, Pahkala K, Keskitalo A, Kujala UM, Pietila S, Hollmen M, Elo L, Huovinen P, D’Auria G, Pekkala S (2018) Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front Microbiol 9:2323

    Article  Google Scholar 

  34. Murtaza N, Burke LM, Vlahovich N, Charlesson B, H ON, Ross ML, Campbell KL, Krause L & Morrison M (2019) The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients 11

  35. O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350:1214–1215

    Article  Google Scholar 

  36. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693

    Article  CAS  Google Scholar 

  37. Packer N, Hoffman-Goetz L (2012) Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice. Can J Aging 31:161–171

    Article  Google Scholar 

  38. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O’Toole PW, Brigidi P (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 5:902–912

    Article  CAS  Google Scholar 

  39. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285

    Article  CAS  Google Scholar 

  40. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503

    Article  CAS  Google Scholar 

  41. Storen O, Helgerud J, Saebo M, Stoa EM, Bratland-Sanda S, Unhjem RJ, Hoff J, Wang E (2017) The effect of age on the V O2max response to high-intensity interval training. Med Sci Sports Exerc 49:78–85

    Article  Google Scholar 

  42. Tang WH, Kitai T, Hazen SL (2017) Gut microbiota in cardiovascular health and disease. Circ Res 120:1183–1196

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant NO. 81872609 and 81771500), and the grant 2017YFC1310700, 2017YFC1310701 from the National Key R&D Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengli Yu or Zhongxiao Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All studies and experimental protocols were approved by the Animal Studies Committees of Soochow University (no. 201810A354).

Informed consent

All listed authors have seen and approve of this manuscript and signed informed consent for submission. All authors thank Dr. Ya-han Zhang (Suzhou Institute for Food Control) for her technical support of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• HIT altered gut microbiota profiles at phylum and genera levels in middle-aged ICR mice.

• HIT elevated carbohydrate metabolism pathway via PICRUSt analysis of gut microbiota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhou, H., Zhang, L. et al. Effects of high-intensity interval training on gut microbiota profiles in 12 months’ old ICR mice. J Physiol Biochem 76, 539–548 (2020). https://doi.org/10.1007/s13105-020-00758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00758-w

Keywords

Navigation