Skip to main content
Log in

Development, evaluation and genetic analysis of sulfosulfuron herbicide resistance in sorghum

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Herbicide tolerant varieties in combination with herbicide seed treatments can be used to manage Striga. However, there are no herbicide resistant sorghum varieties in Kenya. The objectives of this study, therefore, were to develop sulfosulfuron resistance in sorghum, to determine the level of resistance in resultant herbicide tolerant mutants, and to determine the genetic inheritance of herbicide tolerance in sorghum. Five ethyl methane sulphonate (EMS)-derived sulfosulfuron tolerant mutants (designated hb6, hb8, hb12, hb56, and hb462) were identified and selfed to M4 generation. Varying rates of sulfosulfuron, either as a spray or seed coat, were applied to determine the level of tolerance of the mutant lines. Mutant lines were also crossed with the wild-type Seredo and among themselves to determine mode of inheritance. Results showed that the susceptible wild-type Seredo was killed at the lowest herbicide rates of 0.5 g ha-1 and 1 g ha-1 sulfosulfuron. Dry matter from the spraying and seed coating experiments showed mutants to be up to 170 times more resistant to sulfosulfuron than the wild-type. The LD50 values indicated a general trend of hb46 > hb12 > hb462 ~ hb56 > hb8 for level of tolerance under both spraying and seed coating experiments. The F2 progeny of mutant X wild-type crosses segregated in a 1:2:1 fashion for resistant, intermediate, and susceptible, indicating semi-dominant inheritance. Intercrosses between mutant lines did not segregate for resistance in the F2 generation indicating the same mutation could be responsible for the tolerance in all five mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abayo GO, English T, Eplee RE, Kanampiu FK, Ransom JK, Gressel J. 1998. Control of parasitic witchweeds (Striga spp.) on corn (Zea mays) resistant to acetolactate synthase inhibitors. Weed Sci. 46: 459–466

    CAS  Google Scholar 

  • Adu-Tutu KP, Drennan DSH. 1991. Studies on the effects of metsulfuron methyl on the parasitism of sorghum by Striga hermonthica (Del.) Benth. Trop. Pest Manage. 37: 252–255

    Article  CAS  Google Scholar 

  • Ahloowalia BS, Maluszynski, M, Nichterlein K. 2004. Global impact of mutation-derived varieties. Euphytica 135: 187–204

    Article  Google Scholar 

  • Al-Khatib K, Baumgartner JR, Peterson DE, Currie RS. 1998. Imazethapyr resistance in common sunflower (Helianthus annuus) Weed Sci. 46: 403–407

    CAS  Google Scholar 

  • Anderson DD, Roeth FW, Martin AR. 1998. Discovery of a Primisulfuron-Resistant Shattercane (Sorghum Bicolor) Biotype. Weed Technol. 12: 74–77

    Google Scholar 

  • Anderson PC, Georgeson M. 1989. Herbicide tolerant mutants of corn. Genome 3: 994–999

    Article  Google Scholar 

  • Bernasconi P, Woodworth AR, Rosen BA, Subramanian MV, Siehl DL. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 17381–17385

    Article  CAS  PubMed  Google Scholar 

  • Berner DK, Ikie FO, Green JM. 1997. ALS-Inhibiting Herbicide Seed Treatments Control Striga hermonthica in ALS-Modified Corn (Zea mays)" Weed Technol. 11: 704–707

    CAS  Google Scholar 

  • Boutsalis P, Karotam J, Powles SB. 1999. Molecular basis of acetolactate synthase-inhibiting herbicides in Sisymbrium orietale and Brassica tournefortii. J. Pest. Sci. 55: 507–516

    Article  CAS  Google Scholar 

  • Burke IC, Wilcut JW, Cranmer J. 2006. Cross resistance of a Johnsongrass (Sorgum halepense) biotype to aryloxyphenoxypropionate and cyclohexanedione herbicides. Weed Technol. 20: 571–575

    Article  CAS  Google Scholar 

  • Chaleff RS, Ray TB. 1984. Herbicide-resistant mutants from tobacco cell cultures. Science 223: 1148–1151

    Article  CAS  PubMed  Google Scholar 

  • Christopher JT, Powles SB, Holtum JAM. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100: 1909–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duke SO. 1996. Herbicide-Resistant Crops - Background and Perspectives, pp. 1–10, In SO Duke, ed., Herbicide Resistant Crops-Agricultural, Environmental, Economic, and Regulatory and Technical Aspects, Vol. CRC Press

    Google Scholar 

  • Kanampiu FK, Ransom JK, Gressel J. 2001. Imazapyr seed dressings for Striga control on acetolactate synthase target-site resistant maize. Crop Prot. 20: 885–895

    Article  CAS  Google Scholar 

  • Kanampiu FK, Ransom JK, Gressel J. 2002. Imazapyr and pyrithiobac movement in soil and from maize coats controls Striga in legume intercropping. Crop Prot. 21: 611–619

    Article  CAS  Google Scholar 

  • Kanampiu FK, Kabambe V, Massawe C, Jasi L, Friesen D, Ransom JK, Gressel J. 2003. Multi-site, multi-season field tests demonstrate that herbicide seed-coating herbicide-resistance maize controls Striga spp. and increases yields in several African countries. Crop Prot. 22: 697–706

    Article  Google Scholar 

  • Kintzios S, Mardikis M, Passadeos K, Economou G. 1999. In vitro expression of variation of glyphosate tolerance in Sorghum halepense. Weed Res. 39: 49–55

    Article  CAS  Google Scholar 

  • Koornneef M. 2002. Classical Mutagenesis in higher plants, pp 1–11, In PM Gilmartin, C Bowler, eds., Molecular Plant Biology, Vol. 1. Oxford University Press

    Google Scholar 

  • Kuk YI, Kwon OD, Jung HI, Burgos NR, Guh JO. 2002. Cross-resistance pattern and alternative herbicides for Rotala indica resistant to imazosulfuron in Korea. Pest. Biochem. Physiol. 74: 129–138

    Article  CAS  Google Scholar 

  • Le DT, Yoon M-Y, Kim YT, Choi J-D. 2005. Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. Biochim. Biophys. Acta 1749: 103–112

    Article  CAS  PubMed  Google Scholar 

  • López-Ovejero RF, de Carvalho SJP, Nicolai M, Abreu AG, Grombone-Guaratini MT, Toledo REB, Christoffoleti PJ. 2006. Resistance and differential susceptibility of Bidens pilosa and B. subalternans biotypes to ALS-inhibiting herbicides. Sci. Agric. 63: 139–145

    Article  Google Scholar 

  • Marshall LC, Somers DA, Dotray PD, Gengenbach BG, Wyse DL, Gronwald JW. 1992. Allelic mutations in acetyl-coenzyme A carboxylase confer herbicide tolerance in maize. Theor. Appl. Genet. 83: 435–442

    Article  CAS  PubMed  Google Scholar 

  • Mulwa MS, Mwanza LM. 2006. Biotechnology approaches to developing herbicide tolerance/selectivity in crops. Afr. J. Biotechnol. 5: 396–404

    CAS  Google Scholar 

  • Neuffer MG, Coe EW, Wessler SR. 1997. Mutants of maize pp 396–401. Cold Spring Harbor Laboratory Press, Cold Spring

    Google Scholar 

  • Harbor, NY Newhouse K. Singh BK, Shaner D, Stidham M. 1991. Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor. Appl. Genet. 83: 65–70

    Google Scholar 

  • Newhouse KE. Smith WA, Starrett MA, Schaefer TJ, Singh BK. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100: 882–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM. 2007. GenStat for Windows (10th Edition) Introduction. VSN International, Hemel Hempstead

    Google Scholar 

  • Peterson E, Regehr DL, Thomson CR, Al-Khatib A. 2001. Herbicide Mode of Action, Kansas State University Publication, C715, January 2001

    Google Scholar 

  • Powles S, Holtum J, eds., 1994. Herbicide resistance in Plants: Biology and Biochemistry CRC Press, Florida

    Google Scholar 

  • Pozniak CJ, Hucl PJ. 2004. Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci. 44: 23–30

    Article  CAS  Google Scholar 

  • Preston C, Mallory-Smith CA. 2000. Biochemical mechanisms, inheritance and molecular genetics of herbicide resistance in weeds, p. 23–60, In SB Powles, DL Shaner, eds., Herbicide Resistance and World Grains. CRC Press, Boca Raton

    Google Scholar 

  • Saari LL, Coterman JC, Thill DC. 1994. Resistance to acetolactate synthase inhibiting herbicides, pp 83–139, In S Powles, J Holtum, eds., Herbicide Resistance in Plants: Biology and Biochemistry CRC Press, Florida

    Google Scholar 

  • Sala CA, Bulos M, Echarte AM. 2008. Genetic analysis of an induced mutation conferring imidazolinone resistance in sunflower. Crop Sci. 48: 1817–1822

    Article  CAS  Google Scholar 

  • Sebastian SA. Chaleff RS. 1987. Soyabean mutants with increased tolerance for sulfonylurea herbicides. Crop Sci. 27: 948–952

    Article  CAS  Google Scholar 

  • Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Hirosuke K, Tomizawa KI, Yokota A, Kobayashi H. 2008. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol. 147: 1976–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson EB, Coumans MP, Brown GL, Patel JD, Beversdorf WD. 1988. The Characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep. 7: 83–87

    Article  CAS  PubMed  Google Scholar 

  • Wright TR, Bascon NF, Penner D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugerbeet (Beta vulgaris) somatic cell divisions. Weed Sci. 46: 13–23

    CAS  Google Scholar 

  • Yu Q, Friesen LJS, Xhang XQ, Powles SB. 2004. Tolerance to acetolactate synthase and acetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferred by two co-existing resistance mechanisms. Pest. Biochem. Physiol. 78: 21–30

    Article  CAS  Google Scholar 

  • Zhang N, Linscombe S, Oard J. 2003. Outcrossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica 130: 35–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Ndung’u.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndung’u, D.K., Derera, J., Tongoona, P. et al. Development, evaluation and genetic analysis of sulfosulfuron herbicide resistance in sorghum. J. Crop Sci. Biotechnol. 20, 315–325 (2017). https://doi.org/10.1007/s12892-017-0109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0109-0

Key words

Navigation