Skip to main content
Log in

Catalytic Activity of Nanosized Ruthenium Oxide-Coated Titanium Anodes Prepared by Thermal Decomposition for Oxygen Evolution in Sulfuric Acid Solutions

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

The effects of the nanoscale particle size of RuO2 in thermally prepared RuO2-coated Ti anodes on electrochemical kinetic parameters such as the active surface area and Tafel slope for oxygen evolution in sulfuric acid solutions were investigated. RuO2/Ti anodes with four different average sizes of RuO2 particles—5.6 nm, 6.8 nm, 14.6 nm, and 21.2 nm—were prepared. The double-layer charge corresponding to the active surface area for oxygen evolution of the anodes was shown to increase with decreasing average RuO2 particle size. The polarization curves of the anodes showed that the oxygen evolution current density at a certain potential increased with decreasing average RuO2 particle size, meaning that oxygen evolution, especially in the high-current-density region, where it mainly depends on the mass transfer rate, accelerated with decreasing RuO2 particle size. The Tafel slope obtained for the anodes was shown to decrease with decreasing average RuO2 particle size, indicating that the change in particle size affected the electron transfer rate for oxygen evolution. The present study reveals that changes in the nanoscale size of RuO2 affect not only the mass transfer process but also the electron transfer process for oxygen evolution in sulfuric acid solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. R.O. Loutfy, R.L. Leroy, J. Appl. Electrochem. 8, 549–555 (1978)

    Article  CAS  Google Scholar 

  2. F. Parada T., E. Asselin, JOM 61, 54–58 (2009)

  3. P.A. Dykstra, G.H. Kelsall, X. Liu, A.C.C. Tseung, J. Appl. Electrochem. 19, 697–702 (1989)

    Article  CAS  Google Scholar 

  4. P. Paunovic, S.H. Jordanov, Maced. J. Chem. Chem. Eng. 30, 75–83 (2011)

    Article  CAS  Google Scholar 

  5. G. Cifuentes, J. Simpson, F. Lobos, L. Briones, A. Morales, J. Chil. Chem. Soc. 54, 334–338 (2009)

    CAS  Google Scholar 

  6. T. Zhang, M. Morimitsu, Proc. Electrometallurgy 2012, TMS, 29–34 (2012)

    Google Scholar 

  7. M. Morimitsu, J. MMIJ 130(8_9), 415–420 (2014)

  8. T. Zhang, M. Morimitsu, J. MMIJ 131, 572–576 (2015)

    Article  CAS  Google Scholar 

  9. T. Hirai, T. Zhang, M. Morimitsu, Proc. Copper 2016, 2145–2152 (2016)

    Google Scholar 

  10. S. Trasatti, Electrochim. Acta 45, 2377–2385 (2000)

    Article  CAS  Google Scholar 

  11. N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Appl. Catal. B Environ. 111-112, 376–380 (2012)

    Article  CAS  Google Scholar 

  12. G.R.P. Malpass, D.W. Miwa, A.C.P. Miwa, S.A.S. Machado, A.J. Motheo, J. Hazard. Mater. 167, 224–229 (2009)

    Article  CAS  Google Scholar 

  13. V. Trieu, B. Schley, H. Natter, J. Kintrup, A. Bulan, R. Hempelmann, Electrochim. Acta 78, 188–194 (2012)

  14. X. Wang, D. Tang, J. Zhou, J. Alloys. Compounds. 430, 60–66 (2007)

    Article  CAS  Google Scholar 

  15. C.-C. Hu, K.-H. Chang, C.-C. Wang, Electrochim. Acta 52, 4411–4418 (2007)

    Article  CAS  Google Scholar 

  16. A. Barbu, V. Plichon, Electrochim. Acta 42, 489–492 (1997)

    Article  CAS  Google Scholar 

  17. L.E. Owe, M. Tsypkin, K.S. Wallwork, R.G. Haverkamp, S. Sunde, Electrochim. Acta 70, 158–164 (2012)

    Article  CAS  Google Scholar 

  18. J. Ribeiro, A.R. De Andrade, J. Electrochem. Soc. 151, D106–D112 (2004)

    CAS  Google Scholar 

  19. H. Chen, H. Lai, J. Jow, Mater. Chem. Phys. 125, 652–655 (2011)

    Article  CAS  Google Scholar 

  20. E. Tsuji, A. Imanishi, K. Fukui, Y. Nakato, Electrochim. Acta 56, 2009–2016 (2011)

    Article  CAS  Google Scholar 

  21. K. Kawaguchi, G.M. Haarberg, M. Morimitsu, Electrochemistry 77, 879–881 (2009)

    Article  CAS  Google Scholar 

  22. K. Kawaguchi, M. Morimitsu, Electrochemistry 83, 256–261 (2015)

    Article  CAS  Google Scholar 

  23. K. Kawaguchi, M. Morimitsu, J. MMIJ 131, 129–134 (2015)

    Article  CAS  Google Scholar 

  24. S. Ardizzone, A. Carugati, S. Trasatti, J. Electroanal. Chem. 126, 287–292 (1981)

    CAS  Google Scholar 

  25. Ch. Comninellis, G.P. Vercesi, J. Appl. Electrochem. 21, 335–345 (1991)

    Article  CAS  Google Scholar 

  26. L.M. Da Silva, D.V. Franco, L.A. De Faria, J.F.C. Boodts, Electrochim. Acta 49, 3977–3988 (2004)

    Article  Google Scholar 

  27. W. Xu, G.M. Haarberg, S. Sunde, F. Seland, A.P. Ratvik, E. Zimmerman, T. Shimamune, J. Gustavsson, T. Åkre, J. Electrochem. Soc. 164, F895–F900 (2017)

    CAS  Google Scholar 

  28. W. Xu, G.M. Haarberg, F. Seland, S. Sunde, A.P. Ratvik, S. Holmin, J. Gustavsson, Å. Afvander, E. Zimmerman, T. Åkre, Electrochim. Acta 295, 204–214 (2019)

    Article  CAS  Google Scholar 

  29. M. Morimitsu, N. Oshiumi, Chem. Lett. 38, 822–823 (2009)

    Article  CAS  Google Scholar 

  30. M. Morimitsu, K. Uno, Proc. Hydrometallurgy Nickel Cobalt 2009, 571–580 (2009)

  31. A. Damjanovic, A. Dey, J.O.M. Bockris, J. Electrochem. Soc. 113, 739–746 (1966)

    Article  CAS  Google Scholar 

  32. A. Damjanovic, in Modern Aspects of Electrochemistry, Vol. 5, ed. By J. O’M. Bockris, B. E. Conway (Plenum, New York, 1969), p. 369

  33. K. Kinoshita, Electrochemical Oxygen Technology (Wiley, New York, 1992), pp. 78–94

Download references

Funding

This work was partly supported by JSPS KAKENHI Grant Number JP17K06869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kawaguchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, K., Kimura, S. & Morimitsu, M. Catalytic Activity of Nanosized Ruthenium Oxide-Coated Titanium Anodes Prepared by Thermal Decomposition for Oxygen Evolution in Sulfuric Acid Solutions. Electrocatalysis 11, 505–512 (2020). https://doi.org/10.1007/s12678-020-00610-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00610-1

Keywords

Navigation