Skip to main content
Log in

Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

This paper deals with nitrogen-doped graphene nanosheets prepared using dicyandiamide precursor as a catalyst support for oxygen reduction reaction (ORR). Platinum nanoparticles supported on N-doped graphene nanosheets (Pt/NG) were studied as electrocatalysts for ORR in acid and alkaline solutions employing the rotating disk electrode (RDE) technique. Pt/NG nanomaterials were synthesised by chemical reduction of hexachloroplatinic acid using sodium borohydride or ethylene glycol as reducing agents. Surface morphology and composition of the prepared catalysts were examined by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TEM images showed a high dispersion of Pt nanoparticles on N-doped graphene nanosheets due to strong interaction of Pt with nitrogen functionalities. The average nitrogen content was between 6 and 7 at.% according to the XPS analysis. In acidic solution, 20 wt% Pt/NG catalyst prepared by borohydride reduction showed the highest specific activity for O2 reduction from all the Pt/NG materials studied. Pt/NG nanomaterials exhibited excellent electrocatalytic activity in alkaline media, and their half-wave potentials were similar to that of commercial Pt/C catalyst. The RDE data analysis showed that the ORR on the Pt/NG catalysts proceeded via four-electron pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ. 56, 9 (2005)

    Article  CAS  Google Scholar 

  2. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed. 53, 102 (2014)

    Article  CAS  Google Scholar 

  3. P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5 (2014)

    Article  CAS  Google Scholar 

  4. S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208, 96 (2012)

    Article  CAS  Google Scholar 

  5. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem. 495, 134 (2001)

    Article  CAS  Google Scholar 

  6. X. Zhou, J. Qiao, L. Yang, J. Zhang, A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater. 4, 1301523 (2014)

    Article  Google Scholar 

  7. M.S. Saha, R. Li, X. Sun, S. Ye, 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochem Commun. 11, 438 (2009)

    Article  CAS  Google Scholar 

  8. P. Hu, K. Liu, C.P. Deming, S. Chen, Multifunctional graphene-based nanostructures for efficient electrocatalytic reduction of oxygen. J Chem Technol Biotechnol. 90, 2132 (2015)

    Article  CAS  Google Scholar 

  9. J. Ma, A. Habrioux, N. Alonso-Vante, The effect of substrates at cathodes in low-temperature fuel cells. ChemElectroChem 1, 37 (2014)

    Article  Google Scholar 

  10. N.R. Elezovic, V.R. Radmilovic, N.V. Krstajic, Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. RSC Adv. 6, 6788 (2016)

    Article  CAS  Google Scholar 

  11. E. Antolini, Graphene as a new carbon support for low-temperature fuel cell catalysts. Appl Catal B Environ. 123, 52 (2012)

    Article  Google Scholar 

  12. L.T. Soo, K.S. Loh, A.B. Mohamad, W.R.W. Daud, W.Y. Wong, An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Appl Catal A Gen. 497, 198 (2015)

    Article  CAS  Google Scholar 

  13. M.H. Seo, S.M. Choi, H.J. Kim, W.B. Kim, The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition. Electrochem Commun. 13, 182 (2011)

    Article  CAS  Google Scholar 

  14. D.A.C. Brownson, C.E. Banks, Handbook of Graphene Electrochemistry (Springer, London, 2014)

    Book  Google Scholar 

  15. G.V. Fortunato, F. de Lima, G. Maia, Oxygen-reduction reaction strongly electrocatalyzed by Pt electrodeposited onto graphene or graphene nanoribbons. J Power Sources 302, 247 (2016)

    Article  CAS  Google Scholar 

  16. Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao, R. O’Hayre, Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci. 3, 1437 (2010)

    Article  CAS  Google Scholar 

  17. G. Vijayaraghavan, K.J. Stevenson, Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction. Langmuir 23, 5279 (2007)

    Article  CAS  Google Scholar 

  18. Y. Chen, J. Wang, H. Liu, R. Li, X. Sun, S. Ye, S. Knights, Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem Commun. 11, 2071 (2009)

    Article  CAS  Google Scholar 

  19. Y. Chen, J. Wang, H. Liu, M.N. Banis, R. Li, X. Sun, T.-K. Sham, S. Ye, S. Knights, Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115, 3769 (2011)

    Article  CAS  Google Scholar 

  20. S. Jiang, Y. Ma, G. Jian, H. Tao, X. Wang, Y. Fan, Y. Lu, Z. Hu, Y. Chen, Facile construction of Pt-Co/CNx nanotube electrocatalysts and their application to the oxygen reduction reaction. Adv Mater. 21, 4953 (2009)

    Article  CAS  Google Scholar 

  21. Z. Liu, J. Qu, X. Fu, Q. Wang, G. Zhong, F. Peng, Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium. Mater Lett. 142, 115 (2015)

    Article  CAS  Google Scholar 

  22. Y. Jiang, J. Zhang, Y.-H. Qin, D.-F. Niu, X.-S. Zhang, L. Niu, X.-G. Zhou, T.-H. Lu, W.-K. Yuan, Ultrasonic synthesis of nitrogen-doped carbon nanofibers as platinum catalyst support for oxygen reduction. J Power Sources 196, 9356 (2011)

    Article  CAS  Google Scholar 

  23. T. Palaniselvam, A. Irshad, B. Unni, S. Kurungot, Activity modulated low platium content oxygen reduction electrocatalysts prepared by inducing nano-order dislocations on carbon nanofiber through N-2-doping. J Phys Chem C 116, 14754 (2012)

    Article  CAS  Google Scholar 

  24. J. Melke, B. Peter, A. Habereder, J. Ziegler, C. Fasel, A. Nefedov, H. Sezen, C. Wöll, H. Ehrenberg, C. Roth, Metal–support interactions of platinum nanoparticles decorated N-doped carbon nanofibers for the oxygen reduction reaction. ACS Appl Mater Interfaces 8, 82 (2016)

    Article  CAS  Google Scholar 

  25. Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem. 22, 390 (2012)

    Article  CAS  Google Scholar 

  26. R. Wang, D.C. Higgins, M.A. Hoque, D. Lee, F. Hassan, Z. Chen, Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst. Sci Rep. 3, 2431 (2013)

    Google Scholar 

  27. C. Zhu, S. Dong, Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5, 1753 (2013)

    Article  CAS  Google Scholar 

  28. D. Higgins, M.A. Hoque, M.H. Seo, R. Wang, F. Hassan, J.-Y. Choi, M. Pritzker, A. Yu, J. Zhang, Z. Chen, Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv Funct Mater. 24, 4325 (2014)

    Article  CAS  Google Scholar 

  29. E. Gracia-Espino, X. Jia, T. Wagberg, Improved oxygen reduction performance of Pt-Ni Nanoparticles by adhesion on nitrogen-doped graphene. J Phys Chem C 118, 2804 (2014)

    Article  CAS  Google Scholar 

  30. J.-e. Park, Y.J. Jang, Y.J. Kim, M.-s. Song, S. Yoon, D.H. Kim, S.-J. Kim, Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys Chem Chem Phys. 16, 103 (2014)

    Article  CAS  Google Scholar 

  31. M.H. Seo, S.M. Choi, E.J. Lim, I.H. Kwon, J.K. Seo, S.H. Noh, W.B. Kim, B. Han, Toward new fuel cell support materials: a theoretical and experimental study of nitrogen-doped graphene. ChemSusChem 7, 2609 (2014)

    Article  CAS  Google Scholar 

  32. A. Pullamsetty, M. Subbiah, R. Sundara, Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Int J Hydrogen Energy 40, 10251 (2015)

    Article  CAS  Google Scholar 

  33. M.A. Hoque, F.M. Hassan, M.-H. Seo, J.-Y. Choi, M. Pritzker, S. Knights, S. Ye, Z. Chen, Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy 19, 27 (2016)

    Article  CAS  Google Scholar 

  34. S. Stambula, N. Gauquelin, M. Bugnet, S. Gorantla, S. Turner, S. Sun, J. Liu, G. Zhang, X. Sun, G.A. Botton, Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C 118, 3890 (2014)

    Article  CAS  Google Scholar 

  35. J. Zhu, M. Xiao, X. Zhao, C. Liu, J. Ge, W. Xing, Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy 13, 318 (2015)

    Article  CAS  Google Scholar 

  36. L. Perini, C. Durante, M. Favaro, V. Perazzolo, S. Agnoli, O. Schneider, G. Granozzi, A. Gennaro, Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction. ACS Appl Mater Interfaces 7, 1170 (2015)

    Article  CAS  Google Scholar 

  37. C. Zhang, J. Hu, X. Zhang, X. Wang, Y. Meng, Certain nitrogen functionalities on carbon nanofiber support for improving platinum performance. Catal Today 256, 193 (2015)

    Article  CAS  Google Scholar 

  38. R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem. 20, 7114 (2010)

    Article  Google Scholar 

  39. R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Power Sources 195, 8080 (2010)

    Article  CAS  Google Scholar 

  40. G. Wu, C. Dai, D. Wang, D. Li, N. Li, Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J Mater Chem. 20, 3059 (2010)

    Article  CAS  Google Scholar 

  41. S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73, 361 (2014)

    Article  CAS  Google Scholar 

  42. S. Shanmugam, J. Sanetuntikul, T. Momma, T. Osaka, Enhanced oxygen reduction activities of Pt supported on nitrogen-doped carbon nanocapsules. Electrochim Acta 137, 41 (2014)

    Article  CAS  Google Scholar 

  43. B.P. Vinayan, S. Ramaprabhu, Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications. Nanoscale 5, 5109 (2013)

    Article  CAS  Google Scholar 

  44. C.-S. Liu, X.-C. Liu, G.-C. Wang, R.-P. Liang, J.-D. Qiu, Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation. J Electroanal Chem. 728, 41 (2014)

    Article  CAS  Google Scholar 

  45. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752 (2009)

    Article  CAS  Google Scholar 

  46. M. Li, X. Wu, J. Zeng, Z. Hou, S. Liao, Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells. Electrochim Acta 182, 351 (2015)

    Article  CAS  Google Scholar 

  47. X. Guo, L. Li, X. Zhang, J. Chen, Platinum nanoparticles encapsulated in nitrogen-doped mesoporous carbons as methanol-tolerant oxygen reduction electrocatalysts. ChemElectroChem 2, 404 (2015)

    Article  CAS  Google Scholar 

  48. C. Galeano, J.C. Meier, M. Soorholtz, H. Bongard, C. Baldizzone, K.J.J. Mayrhofer, F. Schueth, Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts. ACS Catal. 4, 3856 (2014)

    Article  CAS  Google Scholar 

  49. D. He, Y. Jiang, H. Lv, M. Pan, S. Mu, Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl Catal B Environ. 132, 379 (2013)

    Article  Google Scholar 

  50. J. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P.B. Balbuena, N. Alonso-Vante, Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: effect on the oxygen reduction reaction. J Mater Chem A 3, 11891 (2015)

    Article  CAS  Google Scholar 

  51. T. Huang, S. Mao, H. Pu, Z. Wen, X. Huang, S. Ci, J. Chen, Nitrogen-doped graphene-vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media. J Mater Chem A 1, 13404 (2013)

    Article  CAS  Google Scholar 

  52. K. Jukk, N. Kongi, L. Matisen, T. Kallio, K. Kontturi, K. Tammeveski, Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochim Acta 137, 206 (2014)

    Article  CAS  Google Scholar 

  53. M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink, K. Tammeveski, Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Appl Catal B Environ. 147, 369 (2014)

    Article  CAS  Google Scholar 

  54. I. Kruusenberg, S. Ratso, M. Vikkisk, P. Kanninen, T. Kallio, A.M. Kannan, K. Tammeveski, Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J Power Sources 281, 94 (2015)

    Article  CAS  Google Scholar 

  55. K. Tiido, N. Alexeyeva, M. Couillard, C. Bock, B.R. MacDougall, K. Tammeveski, Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction. Electrochim Acta 107, 509 (2013)

    Article  CAS  Google Scholar 

  56. N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188, 38 (2009)

    Article  CAS  Google Scholar 

  57. H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J Power Sources 187, 93 (2009)

    Article  CAS  Google Scholar 

  58. H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys. 13, 17505 (2011)

    Article  CAS  Google Scholar 

  59. B.P. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Funct Mater. 22, 3519 (2012)

    Article  CAS  Google Scholar 

  60. J. Solla-Gullon, V. Montiel, A. Aldaz, J. Clavilier, Electrochemical characterisation of platinum nanoparticles prepared by microemulsion: how to clean them without loss of crystalline surface structure. J Electroanal Chem. 491, 69 (2000)

    Article  CAS  Google Scholar 

  61. P. Urchaga, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electro-oxidation of COchem on Pt nanosurfaces: solution of the peak multiplicity puzzle. Langmuir 28, 3658 (2012)

    Article  CAS  Google Scholar 

  62. P. Urchaga, S. Baranton, C. Coutanceau, G. Jerkiewicz, Evidence of an Eley–Rideal mechanism in the stripping of a saturation layer of chemisorbed CO on platinum nanoparticles. Langmuir 28, 13094 (2012)

    Article  CAS  Google Scholar 

  63. J. Solla-Gullon, F.J. Vidal-Iglesias, A. Lopez-Cudero, E. Garnier, J.M. Feliu, A. Aldaz, Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys. 10, 3689 (2008)

    Article  CAS  Google Scholar 

  64. J. Solla-Gullón, A. Rodes, V. Montiel, A. Aldaz, J. Clavilier, Electrochemical characterisation of platinum–palladium nanoparticles prepared in a water-in-oil microemulsion. J Electroanal Chem. 554–555, 273 (2003)

    Article  Google Scholar 

  65. A.J. Bard, L.R. Faulkner, Electrochemical Methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  66. S. Gottesfeld, I.D. Raistrick, S. Srinivasan, Oxygen reduction kinetics on a platinum RDE coated with a recast nafion film. J Electrochem Soc. 134, 1455 (1987)

    Article  CAS  Google Scholar 

  67. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2001)

    Google Scholar 

  68. K. Jukk, J. Kozlova, P. Ritslaid, V. Sammelselg, N. Alexeyeva, K. Tammeveski, Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction. J Electroanal Chem. 708, 31 (2013)

    Article  CAS  Google Scholar 

  69. N. Alexeyeva, K. Tammeveski, A. Lopez-Cudero, J. Solla-Gullón, J.M. Feliu, Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions. Electrochim Acta 55, 794 (2010)

    Article  CAS  Google Scholar 

  70. A. Sarapuu, A. Kasikov, T. Laaksonen, K. Kontturi, K. Tammeveski, Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochim Acta 53, 5873 (2008)

    Article  CAS  Google Scholar 

  71. K. Kinoshita, Electrochemical Oxygen Technology (Wiley, New York, 1992)

    Google Scholar 

  72. N.M. Markovic, H.A. Gasteiger, P.N. Ross, Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies. J Phys Chem. 99, 3411 (1995)

    Article  CAS  Google Scholar 

  73. N. Markovic, H. Gasteiger, P.N. Ross, Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc. 144, 1591 (1997)

    Article  CAS  Google Scholar 

  74. L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 5, 2903 (2015)

    Article  CAS  Google Scholar 

  75. R.E. Davis, G.L. Horvath, C.W. Tobias, The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12, 287 (1967)

    Article  CAS  Google Scholar 

  76. J.S. Spendelow, A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys. 9, 2654 (2007)

    Article  CAS  Google Scholar 

  77. R. Rizo, E. Herrero, J.M. Feliu, Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Phys Chem Chem Phys. 15, 15416 (2013)

    Article  CAS  Google Scholar 

  78. K. Tammeveski, T. Tenno, J. Claret, C. Ferrater, Electrochemical reduction of oxygen on thin-film Pt electrodes in 0.1 M KOH. Electrochim Acta 42, 893 (1997)

    Article  CAS  Google Scholar 

  79. K. Tammeveski, M. Arulepp, T. Tenno, C. Ferrater, J. Claret, Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. Electrochim Acta 42, 2961 (1997)

    Article  CAS  Google Scholar 

  80. M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc. 133, 17428 (2011)

    Article  CAS  Google Scholar 

  81. F. Su, Z. Tian, C.K. Poh, Z. Wang, S.H. Lim, Z. Liu, J. Lin, Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem Mater. 22, 832 (2010)

    Article  CAS  Google Scholar 

  82. D.C. Higgins, D. Meza, Z. Chen, Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J Phys Chem C 114, 21982 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by institutional research funding (IUT20-16) by the Estonian Ministry of Education and Research and by the Estonian Research Council (Grant No. 9323). PR would like to thank the Estonian Road Map infrastructure project NAMUR. This research was also supported by the EU through the European Regional Development Fund (TK141 “Advanced materials and high-technology devices for energy recuperation systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaido Tammeveski.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jukk, K., Kongi, N., Rauwel, P. et al. Platinum Nanoparticles Supported on Nitrogen-Doped Graphene Nanosheets as Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis 7, 428–440 (2016). https://doi.org/10.1007/s12678-016-0322-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0322-1

Keywords

Navigation