Skip to main content
Log in

A Review on Environmental Parameters Monitoring Systems for Power Generation Estimation from Renewable Energy Systems

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The transition towards renewable energy sources necessitates accurate monitoring of environmental parameters to estimate power generation from renewable energy systems. The rapid integration of renewable energy sources into the power grid has necessitated the development of efficient monitoring systems to optimise power generation and enhance overall system performance. This paper provides a comprehensive review of environmental parameters monitoring systems designed for estimating power generation from renewable energy sources. The focus is on the advancements in technology and methodologies employed in monitoring crucial environmental factors that influence the output of renewable energy systems. It explores the significance of environmental parameters, including solar irradiance, wind speed, temperature, and humidity, in determining the efficiency of solar and wind power generation. Various monitoring techniques and sensors used for real-time data acquisition are discussed, highlighting their accuracy and reliability in capturing diverse environmental conditions. It delves into the integration of advanced data analytics and machine learning algorithms for processing the vast amounts of data collected from monitoring systems. These techniques play a pivotal role in predicting power generation patterns, optimising energy output, and facilitating proactive maintenance of renewable energy infrastructure. Furthermore, the review discusses the challenges associated with environmental monitoring, such as data accuracy, sensor calibration, and communication issues. It also explores emerging technologies, such as Internet of Things (IoT) devices and remote sensing, that promise to address these challenges and enhance the robustness of environmental monitoring systems. It focuses on case studies and practical applications of environmental monitoring systems in different renewable energy projects. These case studies provide insights into the successful implementation of monitoring systems, their impact on energy yield, and the economic benefits derived from improved system efficiency. It consolidates the current state of environmental parameters monitoring systems for power generation estimation from renewable energy sources. It highlights the interdisciplinary nature of these systems, incorporating elements of meteorology, data science, and engineering. The synthesis of existing knowledge and identification of research gaps contribute to the ongoing efforts to enhance the reliability and efficiency of renewable energy systems in the face of a dynamic and changing climate. This review paper provides a comprehensive analysis of the existing literature on environmental parameters monitoring systems for estimating power generation from renewable energy sources. The paper explores various renewable energy systems, including solar, wind, and hydroelectric, and highlights the significance of monitoring environmental factors such as solar irradiance, wind speed, temperature, humidity, and water flow rate. More than 50+ papers are taken into consideration; they examine the methodologies, sensors, data acquisition techniques, and modeling approaches employed for power estimation. Additionally, the challenges, advancements, and future directions in this field are discussed to guide further research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RES:

Renewable energy systems

PV:

Photovoltaic

EU:

European Union

PR:

Performance ratio

US:

United States

HVAC:

Heating, ventilation, and air conditioning systems

RTDs:

Resistance temperature detectors

RH:

Relative humidity

WSNs:

Wireless sensor networks

LoRaWAN:

Low Power Wide Area Networking

SVMs:

Support vector machines

ANNs:

Artificial neural networks

RMSE:

Root mean square error

EDA:

Exploratory data analysis

RNNs:

Recurrent neural networks

LightGBM:

Light gradient-boosting machine

LSTM:

Long short-term memory

GRU:

Gated recurrent unit

ARIMA:

Autoregressive integrated moving average

MAE:

Mean absolute error

R-squared:

Coefficient of determination

IoT:

Internet of things

WSNs:

Wireless sensor networks

ML:

Machine learning

AI:

Artificial intelligence

References

  1. Arefin, S. S., & Ishraque, M. F. (2023). Wind energy and future trends.

    Book  Google Scholar 

  2. Arefin, S. S., Ishraque, M. F., & Shafiullah, G. M. (2023). Economic assessment of onshore and offshore wind energy systems.

    Book  Google Scholar 

  3. Bastianoni, S., & Marchettini, N. (1996). Ethanol production from biomass: Analysis of process efficiency and sustainability. Biomass and Bioenergy, 11, 411–418.

    Article  Google Scholar 

  4. Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321–334. https://doi.org/10.1016/S0959-6526(01)00043-9

    Article  Google Scholar 

  5. Fumo, N. (2014). A review on the basics of building energy estimation. Renewable and Sustainable Energy Reviews, 31, 53–60.

    Article  Google Scholar 

  6. García, L., Rodríguez, D., Wijnen, M., & Pakulski, I. (Eds.). (2016). Earth observation for water resources management: Current use and future opportunities for the water sector. World Bank Publications.

    Google Scholar 

  7. Gharib, H., & Kovács, G. (2023). A review of prognostic and health management (PHM) methods and limitations for marine diesel engines: New research directions. Machines, 11(7), 695.

    Article  Google Scholar 

  8. Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). Sensor technologies for intelligent transportation systems. Sensors, 18(4), 1212.

    Article  Google Scholar 

  9. Gupta, S., Saputelli, L., & Nikolaou, M. (2016). Big data analytics workflow to safeguard ESP operations in real-time. In SPE Artificial Lift Conference and Exhibition-Americas? (p. D021S004R003). SPE.

    Google Scholar 

  10. Gupta, V., Sharma, M., Pachauri, R. K., & Babu, K. D. (2021). A low-cost real-time IOT enabled data acquisition system for monitoring of PV system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(20), 2529–2543.

    Article  Google Scholar 

  11. Halsey, L. G., Green, J. A., Wilson, R. P., & Frappell, P. B. (2009). Accelerometry to estimate energy expenditure during activity: Best practice with data loggers. Physiological and Biochemical Zoology, 82(4), 396–404.

    Article  Google Scholar 

  12. Hanjra, M. A. (2001). Valuation of socio-economic and environmental impacts of wastewater irrigation in developing countries. Unpublished Report. Available in online IWMI Library Catalogue.

    Google Scholar 

  13. Hanni, J. R., & Venkata, S. K. (2020). A novel helical electrode type capacitance level sensor for liquid level measurement. Sensors and Actuators A: Physical, 315, 112283.

    Article  Google Scholar 

  14. Hasheminejad, E., & Barati, H. (2021). A reliable tree-based data aggregation method in wireless sensor networks. Peer-to-Peer Networking and Applications, 14(2), 873–887.

    Article  Google Scholar 

  15. Her, S. C., & Weng, S. Z. (2021). Fiber Bragg grating pressure sensor integrated with epoxy diaphragm. Sensors, 21(9), 3199.

    Article  Google Scholar 

  16. Ishraque, M. F., Rahman, A., Shezan, S. A., & Muyeen, S. M. (2022). Grid connected microgrid optimization and control for a coastal Island in the Indian Ocean. Sustainability, 14(24), 16697.

    Article  Google Scholar 

  17. Ishraque, M. F., Rahman, A., Shezan, S. A., & Shafiullah, G. M. (2022). Operation and assessment of a microgrid for maldives: Islanded and grid-tied mode. Sustainability, 14(23), 15504.

    Article  Google Scholar 

  18. Melo, J. J. R., Ishraque, M. F., Shafiullah, G. M., & Shezan, S. A. (2023). Centralized monitoring of a cost efficient PLC-SCADA based islanded microgrid considering dispatch techniques. The Journal of Engineering, 2023(8), e12293.

    Article  Google Scholar 

  19. Meng, K., Xiao, X., Wei, W., Chen, G., Nashalian, A., Shen, S., et al. (2022). Wearable pressure sensors for pulse wave monitoring. Advanced Materials, 34(21), 2109357.

    Article  Google Scholar 

  20. Menghi, R., Papetti, A., Germani, M., & Marconi, M. (2019). Energy efficiency of manufacturing systems: A review of energy assessment methods and tools. Journal of Cleaner Production, 240, 118276.

    Article  Google Scholar 

  21. Merchant, N. D., Fristrup, K. M., Johnson, M. P., Tyack, P. L., Witt, M. J., Blondel, P., & Parks, S. E. (2015). Measuring acoustic habitats. Methods in Ecology and Evolution, 6(3), 257–265.

    Article  Google Scholar 

  22. Merzvinskas, M., Bringhenti, C., Tomita, J. T., & De Andrade, C. R. (2020). Air conditioning systems for aeronautical applications: A review. The Aeronautical Journal, 124(1274), 499–532.

    Article  Google Scholar 

  23. Mhlanga, D. (2023). Artificial intelligence and machine learning for energy consumption and production in emerging markets: a review. Energies, 16(2), 745.

    Article  Google Scholar 

  24. Mills, A. (2010). Implications of wide-area geographic diversity for short-term variability of solar power.

    Book  Google Scholar 

  25. Moomaw, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K., & Weir, T. (2011). Introduction. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. von Stechow (Eds.), IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press.

    Google Scholar 

  26. Mohammed, O. H., Amirat, Y., & Benbouzid, M. (2019). Particle swarm optimization of a hybrid wind/tidal/PV/battery energy system. Application to a remote area in Bretagne, France. Energy Procedia, 162, 87–96.

    Article  Google Scholar 

  27. Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998.

    Article  Google Scholar 

  28. Mohindru, P. (2022). Development of liquid level measurement technology: A review. Flow Measurement and Instrumentation, 89, 102295.

    Article  Google Scholar 

  29. Moroni, D., Pieri, G., & Tampucci, M. (2019). Environmental decision support systems for monitoring small scale oil spills: Existing solutions, best practices and current challenges. Journal of Marine Science and Engineering, 7(1), 19.

    Article  Google Scholar 

  30. Mousavi, S. F., Hashemabadi, S. H., & Jamali, J. (2020). Calculation of geometric flow profile correction factor for ultrasonic flow meter using semi-3D simulation technique. Ultrasonics, 106, 106165.

    Article  Google Scholar 

  31. Muppidi, R., Nuvvula, R. S., Muyeen, S. M., Shezan, S. A., & Ishraque, M. F. (2022). Optimization of a fuel cost and enrichment of line loadability for a transmission system by using rapid voltage stability index and grey wolf algorithm technique. Sustainability, 14(7), 4347.

    Article  Google Scholar 

  32. Murakawa, H., Ichimura, S., Sugimoto, K., Asano, H., Umezawa, S., & Sugita, K. (2020). Evaluation method of transit time difference for clamp-on ultrasonic flowmeters in two-phase flows. Experimental Thermal and Fluid Science, 112, 109957.

    Article  Google Scholar 

  33. Muralikrishnan, B. (2021). Performance evaluation of terrestrial laser scanners—A review. Measurement Science and Technology, 32(7), 072001.

    Article  Google Scholar 

  34. Mustafa, R. J., Gomaa, M. R., Al-Dhaifallah, M., & Rezk, H. (2020). Environmental impacts on the performance of solar photovoltaic systems. Sustainability, 12(2), 608.

    Article  Google Scholar 

  35. Mustapha, U. F., Alhassan, A. W., Jiang, D. N., & Li, G. L. (2021). Sustainable aquaculture development: a review on the roles of cloud computing, internet of things and artificial intelligence (CIA). Reviews in Aquaculture, 13(4), 2076–2091.

    Article  Google Scholar 

  36. Newhart, K. B., Holloway, R. W., Hering, A. S., & Cath, T. Y. (2019). Data-driven performance analyses of wastewater treatment plants: A review. Water Research, 157, 498–513.

    Article  Google Scholar 

  37. Nithin, S. K., Hemanth, K., Shamanth, V., Mahale, R. S., Sharath, P. C., & Patil, A. (2022). Importance of condition monitoring in mechanical domain. Materials Today: Proceedings, 54, 234–239.

    Google Scholar 

  38. Nourildean, S. W., Hassib, M. D., & Mohammed, Y. A. (2022). Internet of things based wireless sensor network: A review. Indonesian Journal of Electrical Engineering and Computer Science, 27(1), 246–261.

    Article  Google Scholar 

  39. O’Dwyer, E., Pan, I., Acha, S., & Shah, N. (2019). Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Applied Energy, 237, 581–597.

    Article  Google Scholar 

  40. Odum, Howard T. (2000). Emergy evaluation of an OTEC electrical power system. Energy, Elsevier, 25(4), 389–393.

    Google Scholar 

  41. Olseth, J. A., & Skartveit, A. (1987). A probability density model for hourly total and beam irradiance on arbitrarily orientated planes. Solar Energy, 39(4), 343–351.

    Article  Google Scholar 

  42. Opeyemi, O. I. (2018). Modernisation of fault detection for diagnosis routines in elevators (Doctoral dissertation).

    Google Scholar 

  43. Ozcanli, A. K., Yaprakdal, F., & Baysal, M. (2020). Deep learning methods and applications for electrical power systems: A comprehensive review. International Journal of Energy Research, 44(9), 7136–7157.

    Article  Google Scholar 

  44. Ozdemir, S., & Xiao, Y. (2009). Secure data aggregation in wireless sensor networks: A comprehensive overview. Computer Networks, 53(12), 2022–2037.

    Article  Google Scholar 

  45. Pang, X., Wetter, M., Bhattacharya, P., & Haves, P. (2012). A framework for simulation-based real-time whole building performance assessment. Building and Environment, 54, 100–108.

    Article  Google Scholar 

  46. Park, J., Kim, K. T., & Lee, W. H. (2020). Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water, 12(2), 510.

    Article  Google Scholar 

  47. Pazikadin, A. R., Rifai, D., Ali, K., Malik, M. Z., Abdalla, A. N., & Faraj, M. A. (2020). Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Science of The Total Environment, 715, 136848.

    Article  Google Scholar 

  48. Perez, R., Cebecauer, T., & Šúri, M. (2013). Semi-empirical satellite models, solar energy forecasting and resource assessment (pp. 21–48). Academic Press.

  49. Raugei, Marco, Sgouridis, Sgouris, Murphy, David, Fthenakis, Vasilis, Frischknecht, Rolf, Breyer, Christian, Bardi, Ugo, Barnhart, Charles, Buckley, Alastair, Carbajales-Dale, Michael, Csala, Denes, de Wild-Scholten, Mariska, Heath, Garvin, Jæger-Waldau, Arnulf, Jones, Christopher, Keller, Arthur, Leccisi, Enrica, Mancarella, Pierluigi, Pearsall, Nicola, … Stolz, Philippe. (2017). Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response. Energy Policy, 102, 377–384. https://doi.org/10.1016/j.enpol.2016.12.042

    Article  Google Scholar 

  50. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.

    Article  Google Scholar 

  51. Sharma, V., Kumar, A., Sastry, O. S., & Chandel, S. S. (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions. Energy, 58, 511–518.

    Article  Google Scholar 

  52. Shen, C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research, 54(11), 8558–8593.

    Article  Google Scholar 

  53. Shen, D., Cheng, M., Wu, K., Sheng, Z., & Wang, J. (2022). Effects of supersonic nozzle guide vanes on the performance and flow structures of a rotating detonation combustor. Acta Astronautica, 193, 90–99.

    Article  Google Scholar 

  54. Shezan, S. A., Ishraque, M. F., Muyeen, S. M., Abu-Siada, A., Saidur, R., Ali, M. M., & Rashid, M. M. (2022). Selection of the best dispatch strategy considering techno-economic and system stability analysis with optimal sizing. Energy Strategy Reviews, 43, 100923.

    Article  Google Scholar 

  55. Shezan, S. A., Ishraque, M. F., Shafiullah, G. M., Kamwa, I., Paul, L. C., Muyeen, S. M., et al. (2023). Optimization and control of solar-wind islanded hybrid microgrid by using heuristic and deterministic optimization algorithms and fuzzy logic controller. Energy Reports, 10, 3272–3288.

    Article  Google Scholar 

  56. Shezan, S. A., Kamwa, I., Ishraque, M. F., Muyeen, S. M., Hasan, K. N., Saidur, R., et al. (2023). Evaluation of different optimization techniques and control strategies of hybrid microgrid: A review. Energies, 16(4), 1792.

    Article  Google Scholar 

  57. Sinha, B. B., & Dhanalakshmi, R. (2022). Recent advancements and challenges of Internet of Things in smart agriculture: A survey. Future Generation Computer Systems, 126, 169–184.

    Article  Google Scholar 

  58. Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., & Demir, I. (2020). A comprehensive review of deep learning applications in hydrology and water resources. Water Science and Technology, 82(12), 2635–2670.

    Article  Google Scholar 

  59. Song, Y., Zhao, J., Ostrowski, K. A., Javed, M. F., Ahmad, A., Khan, M. I., et al. (2021). Prediction of compressive strength of fly-ash-based concrete using ensemble and non-ensemble supervised machine-learning approaches. Applied Sciences, 12(1), 361.

    Article  Google Scholar 

  60. Suehrcke, H., & McCormick, P. G. (1988). The frequency distribution of instantaneous insolation values. Solar Energy, 40(5), 413–422.

    Article  Google Scholar 

  61. Suehrcke, H., & McCormick, P. G. (1989). Solar radiation utilizability. Solar Energy, 43(6), 339–345.

    Article  Google Scholar 

  62. Sundarakani, B., Ajaykumar, A., & Gunasekaran, A. (2021). Big data driven supply chain design and applications for blockchain: An action research using case study approach. Omega, 102, 102452.

    Article  Google Scholar 

  63. Tahan, M., Tsoutsanis, E., Muhammad, M., & Karim, Z. A. (2017). Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review. Applied Energy, 198, 122–144.

    Article  Google Scholar 

  64. Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591.

    Article  Google Scholar 

  65. Tanner, R., & Gore, C. (2012). Physiological tests for elite athletes. Human kinetics.

    Google Scholar 

  66. Tansock, J., Bancroft, D., Butler, J., Cao, C., Datla, R., Hansen, S., Helder, D., Kacker, R., Latvakoski, H., Mlynczak, M., Murdock, T., Peterson, J., Pollock, D., Russell, R., Scott, D., Seamons, J., Stone, T., Thurgood, A., Williams, R., et al. (2015). Guidelines for radiometric calibration of electro-optical instruments for remote sensing. https://doi.org/10.6028/NIST.HB.157

    Article  Google Scholar 

  67. Tantalaki, N., Souravlas, S., & Roumeliotis, M. (2019). Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of Agricultural & Food Information, 20(4), 344–380.

    Article  Google Scholar 

  68. Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169.

    Article  Google Scholar 

  69. Thomas, D. S., Twyman, C., Osbahr, H., & Hewitson, B. (2007). Adaptation to climate change and variability: Farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change, 83(3), 301–322.

    Article  Google Scholar 

  70. Tovar, J., Olmo, F. J., & Alados-Arboledas, L. (1998). One-minute global irradiance probability density distributions conditioned to the optical air mass. Solar Energy, 62(6), 387–393.

    Article  Google Scholar 

  71. Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology, 102(6), e03336.

    Article  Google Scholar 

  72. Triki-Lahiani, A., Abdelghani, A. B. B., & Slama-Belkhodja, I. (2018). Fault detection and monitoring systems for photovoltaic installations: A review. Renewable and Sustainable Energy Reviews, 82, 2680–2692.

    Article  Google Scholar 

  73. Trillo-Montero, D., Santiago, I., Luna-Rodriguez, J. J., & Real-Calvo, R. (2014). Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems. Energy Conversion and Management, 81, 144–159.

    Article  Google Scholar 

  74. Truong, V. T., Nayyar, A., & Lone, S. A. (2021). System performance of wireless sensor network using LoRa–Zigbee hybrid communication. Computers, Materials & Continua, 68(2), 1615–1635.

    Article  Google Scholar 

  75. Tyagi, A. K., Aswathy, S. U., Aghila, G., & Sreenath, N. (2021). AARIN: Affordable, accurate, reliable and innovative mechanism to protect a medical cyber-physical system using blockchain technology. International Journal of Intelligent Networks, 2, 175–183.

    Article  Google Scholar 

  76. Van Kuik, G. A. M., Peinke, J., Nijssen, R., Lekou, D., Mann, J., Sørensen, J. N., et al. (2016). Long-term research challenges in wind energy–A research agenda by the European Academy of Wind Energy. Wind Energy Science, 1(1), 1–39.

    Article  Google Scholar 

  77. Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331.

    Article  Google Scholar 

  78. Vignola, F., Grover, C., Lemon, N., & McMahan, A. (2012). Building a bankable solar radiation dataset. Solar Energy, 86(8), 2218–2229. https://doi.org/10.1016/j.solener.2012.05.013

    Article  Google Scholar 

  79. Voyant, C., Notton, G., Kalogirou, S., Nivet, M. L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy, 105, 569–582.

    Article  Google Scholar 

  80. Wabomba, M. S., Mutwiri, M., & Fredrick, M. (2016). Modeling and forecasting Kenyan GDP using autoregressive integrated moving average (ARIMA) models. Science Journal of Applied Mathematics and Statistics, 4(2), 64–73.

    Article  Google Scholar 

  81. Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, 111799.

    Article  Google Scholar 

  82. Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.

    Article  Google Scholar 

  83. Wang, Z., Li, Y., Wang, K., & Huang, Z. (2017). Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis. Renewable and Sustainable Energy Reviews, 76, 1153–1162.

    Article  Google Scholar 

  84. Way, R., Ives, M. C., Mealy, P., & Farmer, J. D. (2022). Empirically grounded technology forecasts and the energy transition. Joule, 6(9), 2057–2082.

    Article  Google Scholar 

  85. Weiskopf, N. G., & Weng, C. (2013). Methods and dimensions of electronic health record data quality assessment: Enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144–151.

    Article  Google Scholar 

  86. Widén, J., Carpman, N., Castellucci, V., Lingfors, D., Olauson, J., Remouit, F., et al. (2015). Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources. Renewable and Sustainable Energy Reviews, 44, 356–375.

    Article  Google Scholar 

  87. Wong, N. H., Tan, A. Y. K., Chen, Y., Sekar, K., Tan, P. Y., Chan, D., et al. (2010). Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 45(3), 663–672.

    Article  Google Scholar 

  88. World Health Organization. (2007). Quality assurance of pharmaceuticals: A compendium of guidelines and related materials. Good manufacturing practices and inspection (Vol. 2). World Health Organization.

    Google Scholar 

  89. Xu, Q., Lu, Y., Zhao, S., Hu, N., Jiang, Y., Li, H., et al. (2021). A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 89, 106382.

    Article  Google Scholar 

  90. Xu, Y., & Goodacre, R. (2018). On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2(3), 249–262.

    Article  Google Scholar 

  91. Yang, D., Wang, W., Gueymard, C. A., Hong, T., Kleissl, J., Huang, J., et al. (2022). A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 161, 112348.

    Article  Google Scholar 

  92. Yang, Y., Li, S., Li, W., & Qu, M. (2018). Power load probability density forecasting using Gaussian process quantile regression. Applied Energy, 213, 499–509.

    Article  Google Scholar 

  93. Yasin, H. M., Zeebaree, S. R., Sadeeq, M. A., Ameen, S. Y., Ibrahim, I. M., Zebari, R. R., et al. (2021). IoT and ICT based smart water management, monitoring and controlling system: A review. Asian Journal of Research in Computer Science, 8(2), 42–56.

    Article  Google Scholar 

  94. Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A. J., & Cao, C. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials, 33(20), 2007764.

    Article  Google Scholar 

  95. Zhang, D., Park, J. W., Zhang, Y., Zhao, Y., Wang, Y., Li, Y., et al. (2020). OptoSense: Towards ubiquitous self-powered ambient light sensing surfaces. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3), 1–27.

    Google Scholar 

  96. Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514.

    Article  MathSciNet  Google Scholar 

  97. Zhang, L., & Wen, J. (2019). A systematic feature selection procedure for short-term data-driven building energy forecasting model development. Energy and Buildings, 183, 428–442.

    Article  Google Scholar 

  98. Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., et al. (2022). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116.

    Article  Google Scholar 

Download references

Acknowledgements

SV would like to thank to Department of Biotechnology (DBT), Faculty of Engineering and Technology, Rama University, Kanpur. YLK would like to thank Department of EEE MLR Institute of Technology, and SK would like to thank Department of Electronics and Communication Engineering, K.S.R.M. College of Engineering, Kadapa, Andhra Pradesh, for providing necessary facilities during their study to complete this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

 SV, YLK and SK wrote the manuscript. SK thoroughly checked, reviewed and also helped in manuscript writing. SV planned this work, supervised and also wrote the manuscript.

Corresponding author

Correspondence to Sonu Kumar.

Ethics declarations

Ethical Approval

The authors have followed ethical guidelines, while preparing the manuscript. The authors have no potential conflicts to disclose. No human or animal participants were involved in this research. Manuscript compliances with the ethical standards.

Funding

None.

Research Involving Humans and Animals Statement

None.

Consent to Participate

The authors have given consent to participate as per the journal guidelines and policies.

Consent for Publication

The authors have given consent to publish as per the journal guidelines and policies.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kameswari, Y.L. & Kumar, S. A Review on Environmental Parameters Monitoring Systems for Power Generation Estimation from Renewable Energy Systems. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01358-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01358-4

Keywords

Navigation