Skip to main content
Log in

Preparation, Physicochemical Characterization, and In Vitro Biological Properties of Selenium Nanoparticle Synthesized from Exopolysaccharide of Enterococcus faecium MC-5

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The selenium nanoparticles (SeNPs) linked with exopolysaccharide (EPS) of E. faecium MC-5 were successfully produced. UV–Vis spectra, DLS, zeta potential, SEM, TEM, FT-IR, thermogravimetric analysis-DSC, and X-ray diffraction measurements were used to characterize the SeNPs in terms of formation, size, stability, and functional group attachment, morphology, distribution, and phase. The spectral resonance of SeNPs was validated by seeing a peak at 383 nm in UV-Vis, demonstrating their synthesis. The SeNPs conjugated to EPS were found to be amorphous and well distributed in the size range of 76 nm. The interactions between the –OH groups of EPS and SeNPs have resulted in new C–O–Se bonds and excellent SeNP scattering distribution in the EPS matrix. The SeNPs were found to have good thermal stability (a strong resistance to thermal processes over 245 °C). The SeNPs displayed good antimicrobial properties with different pathogens at various concentrations. This work not only reveals the critical role of EPS as a biocompatible polymer template for SeNP dispersion, stability, and size control but also acts as an effective antioxidant against DPPH, and hydroxyl radicals and also showed better antibiofilm properties. SeNPs also had a greater survival rate of up to 100 μg/mL in the in vivo study and had no cytotoxicity on larvae of Artemia salina. Hence, the potential SeNPs act as a unique contender to tackle the biofilm challenge in aquaculture sectors and can be implemented in the medical and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Kieliszek, M., Bano, I., & Zare, H. (2021). A comprehensive review on selenium and its effects on human health and distribution in Middle Eastern countries. Biological Trace Element Research, 1–17.

  2. Sarıkaya, E., & Doğan, S. (2020). Glutathione peroxidase in health and diseases. Glutathione system and oxidative stress in health and disease, 49.

  3. Tarhonska, K., Raimondi, S., Specchia, C., Wieczorek, E., Reszka, E., Krol, M. B., et al. (2022). Association of allelic combinations in selenoprotein and redox related genes with markers of lipid metabolism and oxidative stress–multimarkers analysis in a cross-sectional study. Journal of Trace Elements in Medicine and Biology, 69, 126873.

    Google Scholar 

  4. Tran, P. A., & Webster, T. J. (2013). Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology, 24(15), 155101.

    Google Scholar 

  5. Nayak, V., Singh, K. R., Singh, A. K., & Singh, R. P. (2021). Potentialities of selenium nanoparticles in biomedical science. New Journal of Chemistry, 45(6), 2849–2878.

    Google Scholar 

  6. Guisbiers, G., Wang, Q., Khachatryan, E., Mimun, L. C., Mendoza-Cruz, R., Larese-Casanova, P., et al. (2016). Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. International Journal of Nanomedicine, 11, 3731.

    Google Scholar 

  7. Hu, W., Zhao, C., Hu, H., & Yin, S. (2021). Food sources of selenium and its relationship with chronic diseases. Nutrients, 13(5), 1739.

    Google Scholar 

  8. Zhou, N., Long, H., Wang, C., Yu, L., Zhao, M., & Liu, X. (2020). Research progress on the biological activities of selenium polysaccharides. Food & Function, 11(6), 4834–4852.

    Google Scholar 

  9. Gao, X., Li, X., Mu, J., Ho, C. T., Su, J., Zhang, Y., et al. (2020). Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. International Journal of Biological Macromolecules, 152, 605–615.

    Google Scholar 

  10. Vijayakumar, S., Chen, J., Divya, M., Durán-Lara, E. F., Prasannakumar, M., & Vaseeharan, B. (2022). A review on biogenic synthesis of selenium nanoparticles and its biological applications. Journal of Inorganic and Organometallic Polymers and Materials, 1–16.

  11. Medina Cruz, D., Mi, G., & Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), 1400–1412.

    Google Scholar 

  12. Tilwani, Y. M., Lakra, A. K., Domdi, L., Yadav, S., Jha, N., & Arul, V. (2021). Optimization and physicochemical characterization of low molecular levan from Enterococcus faecium MC-5 having potential biological activities. Process Biochemistry, 110, 282–291.

    Google Scholar 

  13. Tilwani, Y. M., Lakra, A. K., Domdi, L., Jha, N., & Arul, V. (2022). Characterization of potential probiotic bacteria Enterococcus faecium MC-5 isolated from the gut content of Cyprinus carpio specularis. Microbial Pathogenesis, 105783.

  14. Xiao, Y., Huang, Q., Zheng, Z., Guan, H., & Liu, S. (2017). Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. International Journal of Biological Macromolecules, 99, 483–491.

    Google Scholar 

  15. Verma, P., & Maheshwari, S. K. (2018). Preparation of sliver and selenium nanoparticles and its characterization by dynamic light scattering and scanning electron microscopy. Journal of microscopy and ultrastructure, 6(4), 182.

    Google Scholar 

  16. Lakra, A. K., Domdi, L., Tilwani, Y. M., & Arul, V. (2020). Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. International Journal of Biological Macromolecules, 143, 797–805.

    Google Scholar 

  17. Sivasankar, P., Seedevi, P., Poongodi, S., Sivakumar, M., Murugan, T., Sivakumar, L., et al. (2018). Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72. Carbohydrate Polymers, 181, 752–759.

    Google Scholar 

  18. San Keskin, N. O., Akbal Vural, O., & Abaci, S. (2020). Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiology Journal, 37(10), 919–928.

    Google Scholar 

  19. Khiralla, G. M., & El-Deeb, B. A. (2015). Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT- Food Science and Technology, 63(2), 1001–1007.

    Google Scholar 

  20. Lee, M. N., Kim, S. K., Li, X. H., & Lee, J. H. (2014). Bacterial virulence analysis using brine shrimp as an infection model in relation to the importance of quorum sensing and proteases. The Journal of General and Applied Microbiology, 60(5), 169–174.

    Google Scholar 

  21. Chari, N., Felix, L., Davoodbasha, M., Ali, A. S., & Nooruddin, T. (2017). In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatalysis and Agricultural Biotechnology, 10, 336–341.

    Google Scholar 

  22. Beheshti, N., Soflaei, S., Shakibaie, M., Yazdi, M. H., Ghaffarifar, F., Dalimi, A., & Shahverdi, A. R. (2013). Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. Journal of Trace Elements in Medicine and Biology, 27(3), 203–207.

    Google Scholar 

  23. Forootanfar, H., Adeli-Sardou, M., Nikkhoo, M., Mehrabani, M., Amir-Heidari, B., Shahverdi, A. R., & Shakibaie, M. (2014). Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. Journal of Trace Elements in Medicine and Biology, 28(1), 75–79.

    Google Scholar 

  24. Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., et al. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical Biology, 56(1), 528–534.

    Google Scholar 

  25. Shakeri, F., Zaboli, F., Fattahi, E., & Babavalian, H. (2022). Biosynthesis of selenium nanoparticles and evaluation of its antibacterial activity against Pseudomonas aeruginosa. Advances in Materials Science and Engineering, 2022.

  26. Dhanraj, G., & Rajeshkumar, S. (2021). Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. Journal of Nanomaterials, 2021, 1–9.

    Google Scholar 

  27. Alam, H., Khatoon, N., Khan, M. A., Husain, S. A., Saravanan, M., & Sardar, M. (2020). Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science, 31, 1003–1011.

    Google Scholar 

  28. Yilmaz, M. T., Ispirli, H., Taylan, O., & Dertli, E. (2021). A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. LWT, 141, 110969.

    Google Scholar 

  29. Wang, Y. Y., Qiu, W. Y., Sun, L., Ding, Z. C., & Yan, J. K. (2018). Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula fluminea. Food Bioscience, 26, 177–184.

    Google Scholar 

  30. Liu, G., Yang, X., Zhang, J., Liang, L., Miao, F., Ji, T., et al. (2021). Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides. International Journal of Biological Macromolecules, 179, 418–428.

    Google Scholar 

  31. Filipović, N., Ušjak, D., Milenković, M. T., Zheng, K., Liverani, L., Boccaccini, A. R., & Stevanović, M. M. (2021). Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology, 8, 624621.

    Google Scholar 

  32. Kora, A. J. (2018). Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: A renewable nanofactory for the synthesis of selenium nanoparticles. Bioresources and Bioprocessing, 5(1), 1–12.

    MathSciNet  Google Scholar 

  33. Borah, S. N., Goswami, L., Sen, S., Sachan, D., Sarma, H., Montes, M., et al. (2021). Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environmental Pollution, 285, 117519.

    Google Scholar 

  34. Gunti, L., Dass, R. S., & Kalagatur, N. K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Frontiers in Microbiology, 10, 931.

    Google Scholar 

  35. Prasad, K. S., & Selvaraj, K. (2014). Biogenic synthesis of selenium nanoparticles and their effect on As (III)-induced toxicity on human lymphocytes. Biological Trace Element Research, 157(3), 275–283.

    Google Scholar 

  36. Kamnev, A. A., Dyatlova, Y. A., Kenzhegulov, O. A., Vladimirova, A. A., Mamchenkova, P. V., & Tugarova, A. V. (2021). Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects. Molecules, 26(4), 1146.

    Google Scholar 

  37. Yang, S. I., George, G. N., Lawrence, J. R., Kaminskyj, S. G., Dynes, J. J., Lai, B., & Pickering, I. J. (2016). Multispecies biofilms transform selenium oxyanions into elemental selenium particles: Studies using combined synchrotron X-ray fluorescence imaging and scanning transmission X-ray microscopy. Environmental Science & Technology, 50(19), 10343–10350.

    Google Scholar 

  38. Lampis, S., Zonaro, E., Bertolini, C., Cecconi, D., Monti, F., Micaroni, M., et al. (2017). Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Journal of Hazardous Materials, 324, 3–14.

    Google Scholar 

  39. Tugarova, A. V., Mamchenkova, P. V., Dyatlova, Y. A., & Kamnev, A. A. (2018). FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 458–463.

    Google Scholar 

  40. Yang, F., Tang, Q., Zhong, X., Bai, Y., Chen, T., Zhang, Y., et al. (2012). Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine, 7, 835.

    Google Scholar 

  41. Jia, X., Liu, Q., Zou, S., Xu, X., & Zhang, L. (2015). Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers, 117, 434–442.

    Google Scholar 

  42. Shi, X. D., Tian, Y. Q., Wu, J. L., & Wang, S. Y. (2021). Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Critical Reviews in Food Science and Nutrition, 61(13), 2225–2236.

    Google Scholar 

  43. Chen, W., Li, Y., Yang, S., Yue, L., Jiang, Q., & Xia, W. (2015). Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydrate Polymers, 132, 574–581.

    Google Scholar 

  44. Shah, C. P., Kumar, M., & Bajaj, P. N. (2007). Acid-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Nanotechnology, 18(38), 385607.

    Google Scholar 

  45. Kruk, J., Aboul-Enein, H. Y., Kładna, A., & Bowser, J. E. (2019). Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radical Research, 53(5), 497–521.

    Google Scholar 

  46. Shahabadi, N., Zendehcheshm, S., & Khademi, F. (2021). Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnology Reports, 30, e00615.

    Google Scholar 

  47. Tang, L., Luo, X., Wang, M., Wang, Z., Guo, J., Kong, F., & Bi, Y. (2021). Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformis. International Journal of Biological Macromolecules, 193, 923–932.

    Google Scholar 

  48. Geoffrion, L. D., Hesabizadeh, T., Medina-Cruz, D., Kusper, M., Taylor, P., Vernet-Crua, A., et al. (2020). Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega, 5(6), 2660–2669.

    Google Scholar 

  49. Huang, X., Chen, X., Chen, Q., Yu, Q., Sun, D., & Liu, J. (2016). Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomaterialia, 30, 397–407.

    Google Scholar 

  50. Vahdati, M., & Tohidi Moghadam, T. (2020). Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Scientific Reports, 10(1), 1–10.

    Google Scholar 

  51. Chen, N., Yao, P., Zhang, W., Zhang, Y., Xin, N., Wei, H., et al. (2022). Selenium nanoparticles: Enhanced nutrition and beyond. Critical Reviews in Food Science and Nutrition, 1–12.

  52. Varlamova, E. G., Turovsky, E. A., & Blinova, E. V. (2021). Therapeutic potential and main methods of obtaining selenium nanoparticles. International Journal of Molecular Sciences, 22(19), 10808.

    Google Scholar 

  53. Shakibaie, M., Forootanfar, H., Golkari, Y., Mohammadi-Khorsand, T., & Shakibaie, M. R. (2015). Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. Journal of Trace Elements in Medicine and Biology, 29, 235–241.

    Google Scholar 

  54. Tran, P. A., O'Brien-Simpson, N., Palmer, J. A., Bock, N., Reynolds, E. C., Webster, T. J., et al. (2019). Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. International Journal of Nanomedicine, 4613–4624.

  55. Liang, X., Zhang, S., Gadd, G. M., McGrath, J., Rooney, D. W., & Zhao, Q. (2022). Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. Regenerative biomaterials, 9, rbac013.

    Google Scholar 

  56. Guisbiers, G., Lara, H. H., Mendoza-Cruz, R., Naranjo, G., Vincent, B. A., Peralta, X. G., & Nash, K. L. (2017). Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 1095–1103.

    Google Scholar 

  57. Bhosale, M., Yadav, A., Magdum, C., & Mohite, S. (2020). Molecular docking studies, synthesis, toxicological evaluation using brine shrimp (Artemia salina L.) model and anti-inflammatory activity of some N-(substituted)-5-phenyl-1, 3, 4-thiadiazol-2-amine derivatives. Int J Sci Res Sci & Technol, 7(5), 51–62.

    Google Scholar 

  58. Pecoraro, R., Scalisi, E. M., Messina, G., Fragalà, G., Ignoto, S., Salvaggio, A., et al. (2021). Artemia salina: A microcrustacean to assess engineered nanoparticles toxicity. Microscopy Research and Technique, 84(3), 531–536.

    Google Scholar 

  59. Rajabi, S., Ramazani, A., Hamidi, M., & Naji, T. (2015). Artemia salina as a model organism in toxicity assessment of nanoparticles. DARU Journal of Pharmaceutical Sciences, 23(1), 1–6.

    Google Scholar 

Download references

Acknowledgements

We want to thank the Department of Biotechnology at Pondicherry Central University in Puducherry-India for providing the necessary funds and resources through DBT, UGC-SAP, and DST-FIST.

Funding

The University Grants Commission (UGC) in New Delhi, India, was awarded with a MANF fellowship (Grant No: 64836).

Author information

Authors and Affiliations

Authors

Contributions

Younus Mohd Tilwani: conceptualization, methodology, investigation, writing — original draft. Avinash Kant Lakra: assistance in data analyses. Latha Domdi: assistance and investigation. Natwar Jha: investigation, Venkatesan Arul: conceptualization, methodology, resources, writing, review-editing, and validation.

Corresponding author

Correspondence to Venkatesan Arul.

Ethics declarations

Ethics Approval

This study does not involve humans or high order animals which require Institutional Human and Animal Ethics Committee permission. This study involves brine shrimp which is not coming under CPCSEA list of animals.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilwani, Y.M., Lakra, A.K., Domdi, L. et al. Preparation, Physicochemical Characterization, and In Vitro Biological Properties of Selenium Nanoparticle Synthesized from Exopolysaccharide of Enterococcus faecium MC-5. BioNanoSci. 13, 413–425 (2023). https://doi.org/10.1007/s12668-023-01077-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01077-2

Keywords

Navigation