Skip to main content
Log in

In Vivo Visualization of Stable Neuroblastoma Cell Lines with Overexpression of Firefly Luciferase or Far-Red Fluorescent Protein

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The development of imaging techniques in the experimental oncology has made it possible to model and continuously monitor growth and development of tumors in vivo. For this purpose, fluorescent or bioluminescent proteins are most commonly introduced into the genome of target cells which in turn can be used to create xenograft tumor models. In our study, SH-SY5Y human neuroblastoma cells were genetically modified with a firefly luciferase ffLuc gene or far-red fluorescent protein Katushka2S gene, and bioluminescence and fluorescence of obtained cells were analyzed in vitro. Then, produced cell lines were used to create xenograft tumor models in vivo. The bioluminescence and fluorescence of the obtained tumor models were evaluated in vivo. When evaluated in vitro, ffLuc bioluminescence was firstly detected within fewer number of SH-SY5Y cells compared to Katushka2S fluorescence. However, after in vivo administration, the fluorescence intensity of SH-SY5Y-Katushka2S cells was significantly higher than the bioluminescence intensity of the same number of SH-SY5Y-ffLuc cells. This may be due to the distribution and limited intracellular availability of a luciferase substrate, which is administered intraperitoneally, and requires further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cevenini, L., Camarda, G., Michelini, E., Siciliano, G., Calabretta, M. M., Bona, R., Kumar, T. R., Cara, A., Branchini, B. R., Fidock, D. A., Roda, A., & Alano, P. (2014). Multicolor bioluminescence boosts malaria research: Quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Analytical Chemistry, 86(17), 8814–8821. https://doi.org/10.1021/ac502098w

    Article  Google Scholar 

  2. Weissleder, R., & Nahrendorf, M. (2015). Advancing biomedical imaging. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14424–14428. https://doi.org/10.1073/pnas.1508524112

    Article  Google Scholar 

  3. Chudakov, D. M., Matz, M. V., Lukyanov, S., & Lukyanov, K. A. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 90(3), 1103–1163. https://doi.org/10.1152/physrev.00038.2009

    Article  Google Scholar 

  4. Day, R. N., & Davidson, M. W. (2009). The fluorescent protein palette: Tools for cellular imaging. Chemical Society Reviews, 38(10), 2887–2921. https://doi.org/10.1039/b901966a

    Article  Google Scholar 

  5. Ntziachristos, V. (2006). Fluorescence molecular imaging. Annual Review of Biomedical Engineering, 8, 1–33. https://doi.org/10.1146/annurev.bioeng.8.061505.095831

    Article  Google Scholar 

  6. Kaskova, Z. M., Tsarkova, A. S., & Yampolsky, I. V. (2016). 1001 lights: Luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chemical Society Reviews, 45(21), 6048–6077. https://doi.org/10.1039/c6cs00296j

    Article  Google Scholar 

  7. Mezzanotte, L., van ’t Root, M., Karatas, H., Goun, E. A., & Lowik, C. (2017). In vivo molecular bioluminescence imaging: New tools and applications. Trends in Biotechnology, 35(7), 640–652. https://doi.org/10.1016/j.tibtech.2017.03.012

    Article  Google Scholar 

  8. Halliwell, L. M., Jathoul, A. P., Bate, J. P., Worthy, H. L., Anderson, J. C., Jones, D. D., & Murray, J. A. H. (2018). DeltaFlucs: Brighter Photinus pyralis firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant. Biotechnology and Bioengineering, 115(1), 50–59. https://doi.org/10.1002/bit.26451

    Article  Google Scholar 

  9. Shigehisa, M., Amaba, N., Arai, S., Higashi, C., Kawanabe, R., Matsunaga, A., Laksmi, F. A., Tokunaga, M., & Ishibashi, M. (2017). Stabilization of luciferase from Renilla reniformis using random mutations. Protein Engineering, Design & Selection, 30(1), 7–13. https://doi.org/10.1093/protein/gzw056

    Article  Google Scholar 

  10. Yu, T., Laird, J. R., Prescher, J. A., & Thorpe, C. (2018). Gaussia princeps luciferase: A bioluminescent substrate for oxidative protein folding. Protein Science, 27(8), 1509–1517. https://doi.org/10.1002/pro.3433

    Article  Google Scholar 

  11. Kobayashi, H., Picard, L. P., Schonegge, A. M., & Bouvier, M. (2019). Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nature Protocols, 14(4), 1084–1107. https://doi.org/10.1038/s41596-019-0129-7

    Article  Google Scholar 

  12. Yeh, H. W., & Ai, H. W. (2019). Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annual Review of Analytical Chemistry, 12(1), 129–150. https://doi.org/10.1146/annurev-anchem-061318-115027

    Article  Google Scholar 

  13. Iwano, S., Sugiyama, M., Hama, H., Watakabe, A., Hasegawa, N., Kuchimaru, T., Tanaka, K. Z., Takahashi, M., Ishida, Y., Hata, J., Shimozono, S., Namiki, K., Fukano, T., Kiyama, M., Okano, H., Kizaka-Kondoh, S., McHugh, T. J., Yamamori, T., Hioki, H., … Miyawaki, A. (2018). Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science, 359(6378), 935–939. https://doi.org/10.1126/science.aaq1067

    Article  Google Scholar 

  14. Hara-Miyauchi, C., Tsuji, O., Hanyu, A., Okada, S., Yasuda, A., Fukano, T., Akazawa, C., Nakamura, M., Imamura, T., Matsuzaki, Y., Okano, H. J., Miyawaki, A., & Okano, H. (2012). Bioluminescent system for dynamic imaging of cell and animal behavior. Biochemical and Biophysical Research Communications, 419(2), 188–193. https://doi.org/10.1016/j.bbrc.2012.01.141

    Article  Google Scholar 

  15. Wood, K. V., Lam, Y. A., & McElroy, W. D. (1989). Introduction to beetle luciferases and their applications. Journal of Bioluminescence and Chemiluminescence, 4(1), 289–301. https://doi.org/10.1002/bio.1170040141

    Article  Google Scholar 

  16. Yan, Y., Shi, P., Song, W., & Bi, S. (2019). Chemiluminescence and bioluminescence imaging for biosensing and therapy: In vitro and in vivo perspectives. Theranostics, 9(14), 4047–4065. https://doi.org/10.7150/thno.33228

    Article  Google Scholar 

  17. Chulpanova, D. S., Solovyeva, V. V., James, V., Arkhipova, S. S., Gomzikova, M. O., Garanina, E. E., Akhmetzyanova, E. R., Tazetdinova, L. G., Khaiboullina, S. F., & Rizvanov, A. A. (2020). Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering, 7(2), 59. https://doi.org/10.3390/bioengineering7020059

    Article  Google Scholar 

  18. Kolobynina, K., Solovyeva, V., Gomzikova, M., Tazetdinova, L., & Rizvanov, A. (2017). Generation of human adipose-derived stem cell lines with expression of TESC gene. BioNanoScience, 7(1), 92–96. https://doi.org/10.1007/s12668-016-0299-5

    Article  Google Scholar 

  19. Solovyeva, V. V., Kolobynina, K. G., Gomzikova, M. O., Tazetdinova, L. G., Zhuravleva, M. N., Slepak, V. Z., & Rizvanov, A. A. (2015). Effect of tescalcin overexpression on osteogenic differentiation of human mesenchymal stem cells. Genes and Cells, 10(4), 90–93.

    Google Scholar 

  20. Souris, J. S., Hickson, J. A., Msezane, L., Rinker-Schaeffer, C. W., & Chen, C. T. (2013). Flexible peritoneal windows for quantitative fluorescence and bioluminescence preclinical imaging. Molecular Imaging, 12(1), 28–38.

    Google Scholar 

  21. Yip, D., Kirkpatrick, A., Xu, T., Masi, T., Stephenson, S., Ripp, S., & Close, D. (2020). Continuous and real-time in vivo autobioluminescent imaging in a mouse model. Methods in Molecular Biology, 2081, 191–201. https://doi.org/10.1007/978-1-4939-9940-8_13

    Article  Google Scholar 

  22. Wang, K., Xie, S., Ren, Y., Xia, H., Zhang, X., & He, J. (2012). Establishment of a bioluminescent MDA-MB-231 cell line for human triple-negative breast cancer research. Oncology Reports, 27(6), 1981–1989. https://doi.org/10.3892/or.2012.1742

    Article  Google Scholar 

  23. Bindhu, J., Das, A., & Sakthivel, K. M. (2020). Anthraquinone from edible fungi Pleurotus ostreatus protects human SH-SY5Y neuroblastoma cells against 6-hydroxydopamine-induced cell death-preclinical validation of gene knockout possibilities of PARK7, PINK1, and SNCA1 using CRISPR SpCas9. Applied Biochemistry and Biotechnology, 191(2), 555–566. https://doi.org/10.1007/s12010-019-03188-7

    Article  Google Scholar 

  24. Menke, K., Schwermer, M., Schramm, A., & Zuzak, T. J. (2019). Preclinical evaluation of antitumoral and cytotoxic properties of Viscum album fraxini extract on pediatric tumor cells. Planta medica, 85(14–15), 1150–1159. https://doi.org/10.1055/a-1013-0382

    Article  Google Scholar 

  25. Meleshina, A., Cherkasova, E., Sergeeva, E., Turchin, I., Kiseleva, E., Dashinimaev, E., Shirmanova, M., & Zagainova, E. (2013). Fluorescent bioimaging in the study of the different models “stem cells-tumor” interaction. The FEBS Journal, 280, 446.

    Google Scholar 

  26. Xu, T., Close, D. M., Webb, J. D., Ripp, S. A., & Sayler, G. S. (2013). Autonomously bioluminescent mammalian cells for continuous and real-time monitoring of cytotoxicity. Journal of Visualized Experiments, 80, e50972. https://doi.org/10.3791/50972

    Article  Google Scholar 

  27. Xu, T., Conway, M., Frank, A., Ripp, S., Sayler, G., & Close, D. (2017). Co-cultured continuously bioluminescent human cells as bioreporters for the detection of prodrug therapeutic impact pre- and post-metabolism. Sensors, 17(12), 2827. https://doi.org/10.3390/s17122827

    Article  Google Scholar 

  28. Alsawaftah, N., Farooq, A., Dhou, S., & Majdalawieh, A. F. (2021). Bioluminescence imaging applications in cancer: A comprehensive review. IEEE Reviews in Biomedical Engineering, 14, 307–326. https://doi.org/10.1109/RBME.2020.2995124

    Article  Google Scholar 

  29. Lim, W., Kim, B., Jo, G., Yang, D. H., Park, M. H., & Hyun, H. (2020). Bioluminescence and near-infrared fluorescence imaging for detection of metastatic bone tumors. Lasers in Medical Science, 35(1), 115–120. https://doi.org/10.1007/s10103-019-02801-9

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Funding

This paper was funded by the subsidy allocated to KFU for the state assignment 0671–2020-0058 in the sphere of scientific activities and by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030) and by the Grant of Russian Foundation for Basic Research №18–34-00738.

Author information

Authors and Affiliations

Authors

Contributions

Study was designed by Daria S. Chulpanova, Leysan G. Tazetdinova, Valeriya V. Solovyeva, and Albert A. Rizvanov. Svetlana S. Arkhipova, Mikhail O. Mavlikeev, and Aysilu I. Mullagulova made in vivo injections and BLI, FLI. Data analyses and interpretation were performed by Daria S. Chulpanova, Leysan G. Tazetdinova, and Valeriya V. Solovyeva. Manuscript was written by Daria S. Chulpanova, Leysan G. Tazetdinova, and Valeriya V. Solovyeva. All authors revised the manuscript and approved the final version.

Corresponding author

Correspondence to Valeriya V. Solovyeva.

Ethics declarations

Research Involving Humans and Animals Statement

All experiments were carried out in compliance with the procedure protocols approved by Kazan Federal University local ethics committee (protocol No. 3, date 03/23/2017) according to the rules adopted by Kazan Federal University and Russian Federation Laws.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulpanova, D.S., Tazetdinova, L.G., Arkhipova, S.S. et al. In Vivo Visualization of Stable Neuroblastoma Cell Lines with Overexpression of Firefly Luciferase or Far-Red Fluorescent Protein. BioNanoSci. 12, 662–669 (2022). https://doi.org/10.1007/s12668-022-00967-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00967-1

Keywords

Navigation