Skip to main content

Advertisement

Log in

Role of Sensor Technology in Detection of the Breast Cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cancer has proven to be a menace for researchers from the past few decades. Breast cancer is a form of cancer with the second-highest mortality rate in the world. It is the leading form of cancer among women worldwide. Lack of early detection mechanism and detection at terminal stages result in this high mortality rate. Present detection mechanisms, including mammography, x-rays, positron emission tomography, or biopsy, prove to be ineffective in detecting breast cancer at early stages. Sensor technology has given new hope for solving this problem. With the advent of nanotechnology, sensors have become more sensitive, specific, and cost-effective. The sensor innovation has offered to ascend to an excess of sensors that can be utilized for early discovery of breast cancer with high explicitness with backsliding cases in individual breast cancer patients. This review puts light on different sensors developed to detect breast cancer over the past few years.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mittal, S., Kaur, H., Gautam, N., & Mantha, A. K. (2017). Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosensors & Bioelectronics, 88, 217–231. https://doi.org/10.1016/j.bios.2016.08.028

    Article  Google Scholar 

  2. RG Blanks MG Wallis RJ Alison RM Given-Wilson 2020 An analysis of screen-detected invasive cancers by grade in the English breast cancer screening programme: Are we failing to detect sufficient small grade 3 cancers? European Radiology https://doi.org/10.1007/s00330-020-07276-9

  3. Mohammadi, S., Salimi, A., Hamd-Ghadareh, S., Fathi, F., & Soleimani, F. (2018). A FRET immunosensor for sensitive detection of CA 15–3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Analytical Biochemistry, 557, 18–26. https://doi.org/10.1016/j.ab.2018.06.008

    Article  Google Scholar 

  4. Yedjou CG, Sims JN, Miele L, Noubissi F, Lowe L, Fonseca DD, Alo RA, Payton M, Tchounwou PB (2019) Health and Racial Disparity in Breast Cancer. In: Ahmad A (ed) Breast cancer metastasis and drug resistance: Challenges and progress. Springer International Publishing, Cham, pp 31–49. https://doi.org/10.1007/978-3-030-20301-6_3

  5. Ghosh, A., & Das, D. (2015). X-ray structurally characterized sensors for ratiometric detection of Zn(2+) and Al(3+) in human breast cancer cells (MCF7): Development of a binary logic gate as a molecular switch. Dalton Transactions, 44(26), 11797–11804. https://doi.org/10.1039/c5dt01303h

    Article  Google Scholar 

  6. Guo, A., Zhu, R., Ren, Y., Dong, J., & Feng, L. (2016). A “turn-on” fluorescent chemosensor for aluminum ion and cell imaging application. Spectrochimica Acta A Molecular and Biomolecular Spectroscopy, 153, 530–534. https://doi.org/10.1016/j.saa.2015.09.009

    Article  Google Scholar 

  7. Peng, G., Hakim, M., Broza, Y. Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Tisch, U., & Haick, H. (2010). Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. British Journal of Cancer, 103(4), 542–551. https://doi.org/10.1038/sj.bjc.6605810

    Article  Google Scholar 

  8. Ayyildiz, M., Guclu, B., Yildiz, M. Z., & Basdogan, C. (2013). An optoelectromechanical tactile sensor for detection of breast lumps. IEEE Transactions on Haptics, 6(2), 145–155. https://doi.org/10.1109/TOH.2012.54

    Article  Google Scholar 

  9. JS Crabtree L Miele 2018 Breast Cancer Stem Cells. Biomedicines 6 3 77 https://doi.org/10.3390/biomedicines6030077

  10. Katwal, G., Paulose, M., Rusakova, I. A., Martinez, J. E., & Varghese, O. K. (2016). Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Letters, 16(5), 3014–3021. https://doi.org/10.1021/acs.nanolett.5b05280

    Article  Google Scholar 

  11. Majd, S. M., Salimi, A., & Ghasemi, F. (2018). An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosensors & Bioelectronics, 105, 6–13. https://doi.org/10.1016/j.bios.2018.01.009

    Article  Google Scholar 

  12. Bakshi, S. F., Guz, N., Zakharchenko, A., Deng, H., Tumanov, A. V., Woodworth, C. D., Minko, S., Kolpashchikov, D. M., & Katz, E. (2018). Nanoreactors based on DNAzyme-functionalized magnetic nanoparticles activated by magnetic field. Nanoscale, 10(3), 1356–1365. https://doi.org/10.1039/c7nr08581h

    Article  Google Scholar 

  13. Yoo, B., Kavishwar, A., Ross, A., Pantazopoulos, P., Moore, A., & Medarova, Z. (2016). In vivo detection of miRNA expression in tumors using an activatable nanosensor. Molecular Imaging and Biology, 18(1), 70–78. https://doi.org/10.1007/s11307-015-0863-3

    Article  Google Scholar 

  14. Ivanov, Y. D., Pleshakova, T. O., Malsagova, K. A., Kozlov, A. F., Kaysheva, A. L., Shumov, I. D., Galiullin, R. A., Kurbatov, L. K., Popov, V. P., Naumova, O. V., Fomin, B. I., Nasimov, D. A., Aseev, A. L., Alferov, A. A., Kushlinsky, N. E., Lisitsa, A. V., & Archakov, A. I. (2018). Detection of marker miRNAs in plasma using SOI-NW biosensor. Sensors and Actuators B-Chemical, 261, 566–571. https://doi.org/10.1016/j.snb.2018.01.153

    Article  Google Scholar 

  15. Wang, L. (2018). Microwave Sensors for Breast Cancer Detection. Sensors (Basel), 18(2), 1–17. https://doi.org/10.3390/s18020655

    Article  Google Scholar 

  16. Khosravi F, Trainor P, Rai SN, Kloecker G, Wickstrom E, Panchapakesan B (2016) Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays. Nanotechnology 27 (13):13LT02. https://doi.org/10.1088/0957-4484/27/13/13LT02

  17. Fernandez-Baldo, M. A., Ortega, F. G., Pereira, S. V., Bertolino, F. A., Serrano, M. J., Lorente, J. A., Raba, J., & Messina, G. A. (2016). Nanostructured platform integrated into a microfluidic immunosensor coupled to laser-induced fluorescence for the epithelial cancer biomarker determination. Microchemical Journal, 128, 18–25. https://doi.org/10.1016/j.microc.2016.03.012

    Article  Google Scholar 

  18. Jana S, Samanta S, Roy S, Qiu JT, Maikap S (2018) Novel IrO x / SiO 2 / W cross-point memory for lysyl-oxidase-like-2 ( LOXL2 ) breast cancer biomarker detection. 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) 10:1–2

  19. Ha, Y., Ko, S., Kim, I., Huang, Y., Mohanty, K., Huh, C., & Maynard, J. A. (2018). Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl Nano Mater, 1(2), 512–521. https://doi.org/10.1021/acsanm.7b00025

    Article  Google Scholar 

  20. Thiagarajan, V., Madhurantakam, S., Sethuraman, S., Balaguru Rayappan, J. B., & Maheswari Krishnan, U. (2016). Nano interfaced biosensor for detection of choline in triple negative breast cancer cells. Journal of Colloid and Interface Science, 462, 334–340. https://doi.org/10.1016/j.jcis.2015.10.014

    Article  Google Scholar 

  21. Yang, D., Liu, M., Xu, J., Yang, C., Wang, X., Lou, Y., He, N., & Wang, Z. (2018). Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7. Talanta, 185, 113–117. https://doi.org/10.1016/j.talanta.2018.03.045

    Article  Google Scholar 

  22. Ren, X., Yan, T., Zhang, S., Zhang, X., Gao, P., Wu, D., Du, B., & Wei, Q. (2014). Ultrasensitive dual amplification sandwich immunosensor for breast cancer susceptibility gene based on sheet materials. The Analyst, 139(12), 3061–3068. https://doi.org/10.1039/c4an00099d

    Article  Google Scholar 

  23. Ribovski, L., Zucolotto, V., & Janegitz, B. C. (2017). A label-free electrochemical DNA sensor to identify breast cancer susceptibility. Microchemical Journal, 133, 37–42. https://doi.org/10.1016/j.microc.2017.03.011

    Article  Google Scholar 

  24. Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2003). Radical causes of cancer. Nature Reviews Cancer, 3(4), 276–285. https://doi.org/10.1038/nrc1046

    Article  Google Scholar 

  25. Hilakivi-Clarke, L. (2000). Estrogens, BRCA1, and breast cancer. Cancer Research, 60(18), 4993–5001.

    Google Scholar 

  26. Hankinson, S. E., Willett, W. C., Manson, J. E., Colditz, G. A., Hunter, D. J., Spiegelman, D., Barbieri, R. L., & Speizer, F. E. (1998). Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. Journal of the National Cancer Institute, 90(17), 1292–1299. https://doi.org/10.1093/jnci/90.17.1292

    Article  Google Scholar 

  27. Mousavisani, S. Z., Raoof, J. B., Turner, A. P. F., Ojani, R., & Mak, W. C. (2018). Label-free DNA sensor based on diazonium immobilisation for detection of DNA damage in breast cancer 1 gene. Sensors and Actuators B-Chemical, 264, 59–66. https://doi.org/10.1016/j.snb.2018.02.152

    Article  Google Scholar 

  28. Pandya, H. J., Park, K., & Desai, J. P. (2015). Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis. Journal of Micromechanics and Microengineering, 25(7), 75025. https://doi.org/10.1088/0960-1317/25/7/075025

    Article  Google Scholar 

  29. Wang, W., Fan, X., Xu, S., Davis, J. J., & Luo, X. (2015). Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosensors & Bioelectronics, 71, 51–56. https://doi.org/10.1016/j.bios.2015.04.018

    Article  Google Scholar 

  30. Perez, W. I., Soto, Y., Ramirez-Vick, J. E., & Melendez, E. (2015). Nanostructured gold dsDNA sensor for early detection of breast cancer by beta protein 1 (BP1). J Electroanal Chem (Lausanne), 751, 49–56. https://doi.org/10.1016/j.jelechem.2015.05.038

    Article  Google Scholar 

  31. Salvo, P., Henry, O. Y., Dhaenens, K., Acero Sanchez, J. L., Gielen, A., Werne Solnestam, B., Lundeberg, J., O’Sullivan, C. K., & Vanfleteren, J. (2014). Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing. BioMedical Materials and Engineering, 24(4), 1705–1714. https://doi.org/10.3233/BME-140982

    Article  Google Scholar 

  32. Benvidi A, Abbasi Z, Dehghan Tezerjani M, Banaei M, Zare HR, Molahosseini H, Jahanbani S (2018) A highly selective DNA sensor based on graphene oxide-silk fibroin composite and AuNPs as a probe oligonucleotide immobilization Platform3667. Acta Chimica Slovenica 65 (2):278–288. https://doi.org/10.17344/acsi.2017.3667

  33. Campuzano, S., Torrente-Rodriguez, R. M., Lopez-Hernandez, E., Conzuelo, F., Granados, R., Sanchez-Puelles, J. M., & Pingarron, J. M. (2014). Magnetobiosensors based on viral protein p19 for microRNA determination in cancer cells and tissues. Angewandte Chemie (International ed. in English), 53(24), 6168–6171. https://doi.org/10.1002/anie.201403270

    Article  Google Scholar 

  34. Vargas E, Povedano E, Montiel VR, Torrente-Rodriguez RM, Zouari M, Montoya JJ, Raouafi N, Campuzano S, Pingarron JM (2018) Single-step incubation determination of miRNAs in cancer cells using an amperometric biosensor based on competitive hybridization onto magnetic beads. Sensors (Basel) 18 (3). https://doi.org/10.3390/s18030863

  35. Zhang, J., Wang, L. L., Hou, M. F., Xia, Y. K., He, W. H., Yan, A., Weng, Y. P., Zeng, L. P., & Chen, J. H. (2018). A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosensors & Bioelectronics, 102, 33–40. https://doi.org/10.1016/j.bios.2017.10.050

    Article  Google Scholar 

  36. Perfezou, M., Turner, A., & Merkoci, A. (2012). Cancer detection using nanoparticle-based sensors. Chemical Society Reviews, 41(7), 2606–2622. https://doi.org/10.1039/c1cs15134g

    Article  Google Scholar 

  37. Salahandish, R., Ghaffarinejad, A., Naghib, S. M., Majidzadeh, A. K., Zargartalebi, H., & Sanati-Nezhad, A. (2018). Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosensors & Bioelectronics, 117, 104–111. https://doi.org/10.1016/j.bios.2018.05.043

    Article  Google Scholar 

  38. Hasanzadeh, M., Tagi, S., Solhi, E., Mokhtarzadeh, A., Shadjou, N., Eftekhari, A., & Mahboob, S. (2018). An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15–3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots. International Journal of Biological Macromolecules, 114, 1008–1017. https://doi.org/10.1016/j.ijbiomac.2018.03.183

    Article  Google Scholar 

  39. Damiati, S., Peacock, M., Mhanna, R., Sopstad, S., Sleytr, U. B., & Schuster, B. (2018). Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sensors and Actuators B-Chemical, 267, 224–230. https://doi.org/10.1016/j.snb.2018.04.037

    Article  Google Scholar 

  40. Pacheco, J. G., Rebelo, P., Freitas, M., Nouws, H. P. A., & Delerue-Matos, C. (2018). Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sensors and Actuators B-Chemical, 273, 1008–1014. https://doi.org/10.1016/j.snb.2018.06.113

    Article  Google Scholar 

  41. Arya, S. K., Zhurauski, P., Jolly, P., Batistuti, M. R., Mulato, M., & Estrela, P. (2018). Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosensors & Bioelectronics, 102, 106–112. https://doi.org/10.1016/j.bios.2017.11.013

    Article  Google Scholar 

  42. Li, X., Shen, C., Yang, M., & Rasooly, A. (2018). Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Analytical Chemistry, 90(7), 4764–4769. https://doi.org/10.1021/acs.analchem.8b00023

    Article  Google Scholar 

  43. Xu, S., Nie, Y., Jiang, L., Wang, J., Xu, G., Wang, W., & Luo, X. (2018). Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related MicroRNAs with DNase-I-assisted target recycling amplification. Analytical Chemistry, 90(6), 4039–4045. https://doi.org/10.1021/acs.analchem.7b05253

    Article  Google Scholar 

  44. Zhu, L., Zhang, Y., Xu, P., Wen, W., Li, X., & Xu, J. (2016). PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosensors & Bioelectronics, 80, 601–606. https://doi.org/10.1016/j.bios.2016.02.019

    Article  Google Scholar 

  45. Veselinovic, J., Li, Z., Daggumati, P., & Seker, E. (2018). Electrically guided DNA immobilization and multiplexed DNA detection with nanoporous gold electrodes. Nanomaterials (Basel), 8(5), 351. https://doi.org/10.3390/nano8050351

    Article  Google Scholar 

  46. Ali, M. A., Mondal, K., Jiao, Y., Oren, S., Xu, Z., Sharma, A., & Dong, L. (2016). Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical Composite of porous graphene and titanium dioxide nanofibers. ACS Applied Materials & Interfaces, 8(32), 20570–20582. https://doi.org/10.1021/acsami.6b05648

    Article  Google Scholar 

  47. Carvajal, S., Fera, S. N., Jones, A. L., Baldo, T. A., Mosa, I. M., Rusling, J. F., & Krause, C. E. (2018). Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker. Biosensors & Bioelectronics, 104, 158–162. https://doi.org/10.1016/j.bios.2018.01.003

    Article  Google Scholar 

  48. Khan NI, Maddaus AG, Song E (2018) A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors (Basel) 8 (1). https://doi.org/10.3390/bios8010007

  49. Hassanpour, S., Hasanzadeh, M., Saadati, A., Shadjou, N., Soleymani, J., & Jouyban, A. (2019). A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: A new platform to construction of microfluidic paper-based analytical devices (μPADs) towards biomedical analysis. Microchemical Journal, 146, 345–358. https://doi.org/10.1016/j.microc.2019.01.018

    Article  Google Scholar 

  50. Zouari, M., Campuzano, S., Pingarron, J. M., & Raouafi, N. (2017). Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosensors & Bioelectronics, 91, 40–45. https://doi.org/10.1016/j.bios.2016.12.033

    Article  Google Scholar 

  51. Wu, L., Ji, H. W., Guan, Y. J., Ran, X., Ren, J. S., & Qu, X. G. (2017). A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. Npg Asia Materials, 9(3), e356–e356. https://doi.org/10.1038/am.2017.11

    Article  Google Scholar 

  52. Wang, G., Xu, Q., Liu, L., Su, X., Lin, J., Xu, G., & Luo, X. (2017). Mixed self-assembly of polyethylene glycol and aptamer on polydopamine surface for highly sensitive and low-fouling detection of adenosine triphosphate in complex media. ACS Applied Materials & Interfaces, 9(36), 31153–31160. https://doi.org/10.1021/acsami.7b09529

    Article  Google Scholar 

  53. Akter, R., Jeong, B., Choi, J. S., & Rahman, M. A. (2016). Ultrasensitive Nanoimmunosensor by coupling non-covalent functionalized graphene oxide platform and numerous ferritin labels on carbon nanotubes. Biosensors & Bioelectronics, 80, 123–130. https://doi.org/10.1016/j.bios.2016.01.035

    Article  Google Scholar 

  54. Kaplan, M., Kilic, T., Guler, G., Mandli, J., Amine, A., & Ozsoz, M. (2017). A novel method for sensitive microRNA detection: Electropolymerization based doping. Biosensors & Bioelectronics, 92, 770–778. https://doi.org/10.1016/j.bios.2016.09.050

    Article  Google Scholar 

  55. Shi, K., Dou, B., Yang, J., Yuan, R., & Xiang, Y. (2016). Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells. Analytica Chimica Acta, 916, 1–7. https://doi.org/10.1016/j.aca.2016.02.034

    Article  Google Scholar 

  56. Qiu, Y., Wen, Q., Zhang, L., & Yang, P. (2016). Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor. Talanta, 150, 286–295. https://doi.org/10.1016/j.talanta.2015.12.019

    Article  Google Scholar 

  57. Alikhani, A., Gharooni, M., Abiri, H., Farokhmanesh, F., & Abdolahad, M. (2018). Tracing the pH dependent activation of autophagy in cancer cells by silicon nanowire-based impedance biosensor. Journal of Pharmaceutical and Biomedical Analysis, 154, 158–165. https://doi.org/10.1016/j.jpba.2018.02.040

    Article  Google Scholar 

  58. Povedano, E., Vargas, E., Montiel, V. R., Torrente-Rodriguez, R. M., Pedrero, M., Barderas, R., Segundo-Acosta, P. S., Pelaez-Garcia, A., Mendiola, M., Hardisson, D., Campuzano, S., & Pingarron, J. M. (2018). Electrochemical affinity biosensors for fast detection of gene-specific methylations with no need for bisulfite and amplification treatments. Science and Reports, 8(1), 6418. https://doi.org/10.1038/s41598-018-24902-1

    Article  Google Scholar 

  59. Wang, K., He, M. Q., Zhai, F. H., He, R. H., & Yu, Y. L. (2017). A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta, 166, 87–92. https://doi.org/10.1016/j.talanta.2017.01.052

    Article  Google Scholar 

  60. Nawaz MA, Rauf S, Catanante G, Nawaz MH, Nunes G, Marty JL, Hayat A (2016) One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors (Basel) 16 (10). https://doi.org/10.3390/s16101651

  61. Ahirwar, R., Dalal, A., Sharma, J. G., Yadav, B. K., Nahar, P., Kumar, A., & Kumar, S. (2019). An aptasensor for rapid and sensitive detection of estrogen receptor alpha in human breast cancer. Biotechnology and Bioengineering, 116(1), 227–233. https://doi.org/10.1002/bit.26819

    Article  Google Scholar 

  62. Mouffouk, F., Aouabdi, S., Al-Hetlani, E., Serrai, H., Alrefae, T., & Leo Chen, L. (2017). New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer. International Journal of Nanomedicine, 12, 3037–3047. https://doi.org/10.2147/IJN.S127086

    Article  Google Scholar 

  63. Kieninger, J., Tamari, Y., Enderle, B., Jobst, G., Sandvik, J. A., Pettersen, E. O., & Urban, G. A. (2018). Sensor access to the cellular microenvironment using the sensing cell culture flask. Biosensors (Basel), 8(2), 1–11. https://doi.org/10.3390/bios8020044

    Article  Google Scholar 

  64. Jolly, P., Batistuti, M. R., Miodek, A., Zhurauski, P., Mulato, M., Lindsay, M. A., & Estrela, P. (2016). Highly sensitive dual mode electrochemical platform for microRNA detection. Science and Reports, 6, 36719. https://doi.org/10.1038/srep36719

    Article  Google Scholar 

  65. Lim, J. M., Ryu, M. Y., Yun, J. W., Park, T. J., & Park, J. P. (2017). Electrochemical peptide sensor for diagnosing adenoma-carcinoma transition in colon cancer. Biosensors & Bioelectronics, 98, 330–337. https://doi.org/10.1016/j.bios.2017.07.013

    Article  Google Scholar 

  66. Lin, C. W., Wei, K. C., Liao, S. S., Huang, C. Y., Sun, C. L., Wu, P. J., Lu, Y. J., Yang, H. W., & Ma, C. C. (2015). A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors & Bioelectronics, 67, 431–437. https://doi.org/10.1016/j.bios.2014.08.080

    Article  Google Scholar 

  67. Gajasinghe, R., Jones, M., Ince, T. A., & Tigli, O. (2018). Label and immobilization free detection and differentiation of tumor cells. Ieee Sensors Journal, 18(9), 3486–3493. https://doi.org/10.1109/Jsen.2018.2813975

    Article  Google Scholar 

  68. Dong, W., Ren, Y., Bai, Z., Yang, Y., Wang, Z., Zhang, C., & Chen, Q. (2018). Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta, 189, 79–85. https://doi.org/10.1016/j.talanta.2018.06.067

    Article  Google Scholar 

  69. Benvidi, A., Tezerjani, M. D., Jahanbani, S., Mazloum Ardakani, M., & Moshtaghioun, S. M. (2016). Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs. Talanta, 147, 621–627. https://doi.org/10.1016/j.talanta.2015.10.043

    Article  Google Scholar 

  70. Pallela, R., Chandra, P., Noh, H. B., & Shim, Y. B. (2016). An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosensors & Bioelectronics, 85, 883–890. https://doi.org/10.1016/j.bios.2016.05.092

    Article  Google Scholar 

  71. Marques, R. C. B., Costa-Rama, E., Viswanathan, S., Nouws, H. P. A., Costa-Garcia, A., Delerue-Matos, C., & Gonzalez-Garcia, B. (2018). Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15–3 and HER2-ECD. Sensors and Actuators B-Chemical, 255, 918–925. https://doi.org/10.1016/j.snb.2017.08.107

    Article  Google Scholar 

  72. Zhang, Y., Deng, D., Zhu, X., Liu, S., Zhu, Y., Han, L., & Luo, L. (2018). Electrospun bimetallic Au-Ag/Co3O4 nanofibers for sensitive detection of hydrogen peroxide released from human cancer cells. Analytica Chimica Acta, 1042, 20–28. https://doi.org/10.1016/j.aca.2018.07.065

    Article  Google Scholar 

  73. Chocholova, E., Bertok, T., Lorencova, L., Holazova, A., Farkas, P., Vikartovska, A., Bella, V., Velicova, D., Kasak, P., Eckstein, A. A., Mosnacek, J., Hasko, D., & Tkac, J. (2018). Advanced antifouling zwitterionic layer based impedimetric HER2 biosensing in human serum: Glycoprofiling as a novel approach for breast cancer diagnostics. Sensors and Actuators B-Chemical, 272, 626–633. https://doi.org/10.1016/j.snb.2018.07.029

    Article  Google Scholar 

  74. Ebrahimi, A., Nikokar, I., Zokaei, M., & Bozorgzadeh, E. (2018). Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in triple negative breast cancer. Talanta, 189, 592–598. https://doi.org/10.1016/j.talanta.2018.07.016

    Article  Google Scholar 

  75. Hasanzadeh, M., Razmi, N., Mokhtarzadeh, A., Shadjou, N., & Mahboob, S. (2018). Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported alpha-cyclodextrin. International Journal of Biological Macromolecules, 108, 69–80. https://doi.org/10.1016/j.ijbiomac.2017.11.149

    Article  Google Scholar 

  76. Lin, C. E., Hiraka, K., Matloff, D., Johns, J., Deng, A., Sode, K., & La Belle, J. (2018). Development toward a novel integrated tear lactate sensor using Schirmer test strip and engineered lactate oxidase. Sensors and Actuators B-Chemical, 270, 525–529. https://doi.org/10.1016/j.snb.2018.05.061

    Article  Google Scholar 

  77. Wang, Y., Ali, M. A., Chow, E. K. C., Dong, L., & Lu, M. (2018). An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker. Biosensors & Bioelectronics, 107, 224–229. https://doi.org/10.1016/j.bios.2018.02.038

    Article  Google Scholar 

  78. Ribeiro, J. A., Pereira, C. M., Silva, A. F., & Sales, M. G. F. (2018). Disposable electrochemical detection of breast cancer tumour marker CA 15–3 using poly(Toluidine Blue) as imprinted polymer receptor. Biosensors & Bioelectronics, 109, 246–254. https://doi.org/10.1016/j.bios.2018.03.011

    Article  Google Scholar 

  79. Shahrokhian, S., & Salimian, R. (2018). Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sensors and Actuators B-Chemical, 266, 160–169. https://doi.org/10.1016/j.snb.2018.03.120

    Article  Google Scholar 

  80. Ou, D., Sun, D. P., Liang, Z. X., Chen, B. W., Lin, X. G., & Chen, Z. G. (2019). A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sensors and Actuators B-Chemical, 285, 398–404. https://doi.org/10.1016/j.snb.2019.01.079

    Article  Google Scholar 

  81. Shamsipur, M., Emami, M., Farzin, L., & Saber, R. (2018). A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosensors & Bioelectronics, 103, 54–61. https://doi.org/10.1016/j.bios.2017.12.022

    Article  Google Scholar 

  82. Tang, Y. H., Lin, H. C., Lai, C. L., Chen, P. Y., & Lai, C. H. (2018). Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosensors & Bioelectronics, 116, 100–107. https://doi.org/10.1016/j.bios.2018.05.002

    Article  Google Scholar 

  83. Tian, L., Qi, J. X., Qian, K., Oderinde, O., Liu, Q. Y., Yao, C., Song, W., & Wang, Y. H. (2018). Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. Journal of Electroanalytical Chemistry, 812, 1–9. https://doi.org/10.1016/j.jelechem.2017.12.012

    Article  Google Scholar 

  84. Uliana, C. V., Peverari, C. R., Afonso, A. S., Cominetti, M. R., & Faria, R. C. (2018). Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosensors & Bioelectronics, 99, 156–162. https://doi.org/10.1016/j.bios.2017.07.043

    Article  Google Scholar 

  85. Azimzadeh, M., Rahaie, M., Nasirizadeh, N., Ashtari, K., & Naderi-Manesh, H. (2016). An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors & Bioelectronics, 77, 99–106. https://doi.org/10.1016/j.bios.2015.09.020

    Article  Google Scholar 

  86. Cardoso, A. R., Moreira, F. T. C., Fernandes, R., & Sales, M. G. F. (2016). Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosensors & Bioelectronics, 80, 621–630. https://doi.org/10.1016/j.bios.2016.02.035

    Article  Google Scholar 

  87. Cui, M., Wang, Y., Wang, H. P., Wu, Y. M., & Luo, X. L. (2017). A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer. Sensors and Actuators B-Chemical, 244, 742–749. https://doi.org/10.1016/j.snb.2017.01.060

    Article  Google Scholar 

  88. Ghazizadeh, E., Naseri, Z., Jaafari, M. R., Forozandeh-Moghadam, M., & Hosseinkhani, S. (2018). A fires novel report of exosomal electrochemical sensor for sensing micro RNAs by using multi covalent attachment p19 with high sensitivity. Biosensors & Bioelectronics, 113, 74–81. https://doi.org/10.1016/j.bios.2018.04.023

    Article  Google Scholar 

  89. Tabrizi, M. A., Shamsipur, M., Saber, R., Sarkar, S., & Zolfaghari, N. (2017). An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled Anti-HCT as a signal tag. Sensors and Actuators B-Chemical, 243, 823–830. https://doi.org/10.1016/j.snb.2016.12.061

    Article  Google Scholar 

  90. Zanghelini, F., Frias, I. A. M., Rego, M., Pitta, M. G. R., Sacilloti, M., Oliveira, M. D. L., & Andrade, C. A. S. (2017). Biosensing breast cancer cells based on a three-dimensional TIO2 nanomembrane transducer. Biosensors & Bioelectronics, 92, 313–320. https://doi.org/10.1016/j.bios.2016.11.006

    Article  Google Scholar 

  91. Benvidi, A., & Jahanbani, S. (2016). Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe 3 O 4 @Ag nanoparticles for detection of breast cancer mutation. Journal of Electroanalytical Chemistry, 768, 47–54. https://doi.org/10.1016/j.jelechem.2016.02.038

    Article  Google Scholar 

  92. Chen, L. H., Liu, X., & Chen, C. F. (2017). Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene. Journal of Electroanalytical Chemistry, 791, 204–210. https://doi.org/10.1016/j.jelechem.2017.03.001

    Article  Google Scholar 

  93. Saeed, A. A., Sanchez, J. L. A., O’Sullivan, C. K., & Abbas, M. N. (2017). DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry, 118, 91–99. https://doi.org/10.1016/j.bioelechem.2017.07.002

    Article  Google Scholar 

  94. Fu, X. M., Liu, Z. J., Cai, S. X., Zhao, Y. P., Wu, D. Z., Li, C. Y., & Chen, J. H. (2016). Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chinese Chemical Letters, 27(6), 920–926. https://doi.org/10.1016/j.cclet.2016.04.014

    Article  Google Scholar 

  95. Rafiee-Pour, H. A., Behpour, M., & Keshavarz, M. (2016). A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: Application to breast cancer biomarker miRNA-21. Biosensors & Bioelectronics, 77, 202–207. https://doi.org/10.1016/j.bios.2015.09.025

    Article  Google Scholar 

  96. Li, S., Liu, C., Gong, H., Chen, C., Chen, X., & Cai, C. (2018). Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta, 178, 974–979. https://doi.org/10.1016/j.talanta.2017.10.023

    Article  Google Scholar 

  97. Eletxigerra, U., Martinez-Perdiguero, J., Merino, S., Barderas, R., Ruiz-Valdepeñas Montiel, V., Villalonga, R., Pingarrón, J. M., & Campuzano, S. (2016). Estrogen receptor α determination in serum, cell lysates and breast cancer cells using an amperometric magnetoimmunosensing platform. Sensing and Bio-Sensing Research, 7, 71–76. https://doi.org/10.1016/j.sbsr.2016.01.005

    Article  Google Scholar 

  98. Nsabimana, A., Lan, Y. X., Du, F. X., Wang, C., Zhang, W., & Xu, G. B. (2019). Alkaline phosphatase-based electrochemical sensors for health applications. Analytical Methods, 11(15), 1996–2006. https://doi.org/10.1039/c8ay02793e

    Article  Google Scholar 

  99. Augustine, S., Joshi, A. G., Yadav, B. K., Mehta, A., Kumar, P., Renugopalakrishanan, V., & Malhotra, B. D. (2018). An emerging nanostructured molybdenum trioxide-based biocompatible sensor platform for breast cancer biomarker detection. MRS Communications, 8(3), 668–679. https://doi.org/10.1557/mrc.2018.182

    Article  Google Scholar 

  100. Hasanzadeh, M., Feyziazar, M., Solhi, E., Moichtarzadeh, A., Soleymani, J., Shadjou, N., Jouyban, A., & Mahboob, S. (2019). Ultrasensitive immunoassay of breast cancer type 1 susceptibility protein (BRCA1) using poly (dopamine-beta cyclodextrine-Cetyl trimethylammonium bromide) doped with silver nanoparticles: A new platform in early stage diagnosis of breast cancer and efficient management. Microchemical Journal, 145, 778–783. https://doi.org/10.1016/j.microc.2018.11.029

    Article  Google Scholar 

  101. Ikhsan NI, Pandikumar A (2019) Doped-graphene modified electrochemical sensors. In: Graphene-Based Electrochemical Sensors for Biomolecules. pp 67–87. https://doi.org/10.1016/b978-0-12-815394-9.00003-0

  102. Nasiri N, Clarke C (2019) Nanostructured Chemiresistive Gas Sensors for Medical Applications. Sensors (Basel) 19 (3). https://doi.org/10.3390/s19030462

  103. Yang, M., Yi, X., Wang, J., & Zhou, F. (2014). Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer’s disease biomarkers in cells and body fluids. The Analyst, 139(8), 1814–1825. https://doi.org/10.1039/c3an02065g

    Article  Google Scholar 

  104. Sharpe, J. C., Mitchell, J. S., Lin, L., Sedoglavich, H., & Blaikie, R. J. (2008). Gold nanohole array substrates as immunobiosensors. Analytical Chemistry, 80(6), 2244–2249. https://doi.org/10.1021/ac702555r

    Article  Google Scholar 

  105. Yavas, O., Acimovic, S. S., Garcia-Guirado, J., Berthelot, J., Dobosz, P., Sanz, V., & Quidant, R. (2018). Self-calibrating on-chip localized surface plasmon resonance sensing for quantitative and multiplexed detection of cancer markers in human serum. ACS Sens, 3(7), 1376–1384. https://doi.org/10.1021/acssensors.8b00305

    Article  Google Scholar 

  106. Aadil, K. R., Barapatre, A., Meena, A. S., & Jha, H. (2016). Hydrogen peroxide sensing and cytotoxicity activity of Acacia lignin stabilized silver nanoparticles. International Journal of Biological Macromolecules, 82, 39–47. https://doi.org/10.1016/j.ijbiomac.2015.09.072

    Article  Google Scholar 

  107. Gool, E. L., Stojanovic, I., Schasfoort, R. B. M., Sturk, A., van Leeuwen, T. G., Nieuwland, R., Terstappen, L., & Coumans, F. A. W. (2017). Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clinical Chemistry, 63(10), 1633–1641. https://doi.org/10.1373/clinchem.2016.271049

    Article  Google Scholar 

  108. Chen, S. N., Zhao, Q., Zhang, L. Y., Wang, L. Q., Zeng, Y. L., & Huang, H. W. (2015). Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods. Sensors and Actuators B-Chemical, 221, 1391–1397. https://doi.org/10.1016/j.snb.2015.08.023

    Article  Google Scholar 

  109. Washburn, A. L., Shia, W. W., Lenkeit, K. A., Lee, S. H., & Bailey, R. C. (2016). Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays. The Analyst, 141(18), 5358–5365. https://doi.org/10.1039/c6an01076h

    Article  Google Scholar 

  110. Sina, A. A., Vaidyanathan, R., Dey, S., Carrascosa, L. G., Shiddiky, M. J., & Trau, M. (2016). Real time and label free profiling of clinically relevant exosomes. Science and Reports, 6, 30460. https://doi.org/10.1038/srep30460

    Article  Google Scholar 

  111. Eletxigerra, U., Martinez-Perdiguero, J., Barderas, R., Pingarron, J. M., Campuzano, S., & Merino, S. (2016). Surface plasmon resonance immunosensor for ErbB2 breast cancer biomarker determination in human serum and raw cancer cell lysates. Analytica Chimica Acta, 905, 156–162. https://doi.org/10.1016/j.aca.2015.12.020

    Article  Google Scholar 

  112. Vergara, D., Bianco, M., Pagano, R., Priore, P., Lunetti, P., Guerra, F., Bettini, S., Carallo, S., Zizzari, A., Pitotti, E., Giotta, L., Capobianco, L., Bucci, C., Valli, L., Maffia, M., Arima, V., & Gaballo, A. (2018). An SPR based immunoassay for the sensitive detection of the soluble epithelial marker E-cadherin. Nanomedicine, 14(7), 1963–1971. https://doi.org/10.1016/j.nano.2018.05.018

    Article  Google Scholar 

  113. Chen, H. X., Jia, S. S., Qi, F. J., Zou, F., Hou, Y. F., Koh, K., & Yin, Y. M. (2016). Fabrication of a simple and convenient surface plasmon resonance cytosensor based on oriented peptide on calix[4]arene crownether monolayer. Sensors and Actuators B-Chemical, 225, 504–509. https://doi.org/10.1016/j.snb.2015.11.046

    Article  Google Scholar 

  114. Cai, B. J., Guo, S., & Li, Y. (2018). MoS2-based sensor for the detection of miRNA in serum samples related to breast cancer. Analytical Methods, 10(2), 230–236. https://doi.org/10.1039/c7ay02329d

    Article  Google Scholar 

  115. Tang, Y., Wang, Z., Yang, X., Chen, J., Liu, L., Zhao, W., Le, X. C., & Li, F. (2015). Constructing real-time, wash-free, and reiterative sensors for cell surface proteins using binding-induced dynamic DNA assembly. Chemical Science, 6(10), 5729–5733. https://doi.org/10.1039/c5sc01870f

    Article  Google Scholar 

  116. Hessels, A. M., Taylor, K. M., & Merkx, M. (2016). Monitoring cytosolic and ER Zn(2+) in stimulated breast cancer cells using genetically encoded FRET sensors. Metallomics, 8(2), 211–217. https://doi.org/10.1039/c5mt00257e

    Article  Google Scholar 

  117. Xu, Q., Yuan, H., Dong, X., Zhang, Y., Asif, M., Dong, Z., He, W., Ren, J., Sun, Y., & Xiao, F. (2018). Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosensors & Bioelectronics, 107, 153–162. https://doi.org/10.1016/j.bios.2018.02.026

    Article  Google Scholar 

  118. Tiwari, D. K., Tanaka, S., Inouye, Y., Yoshizawa, K., Watanabe, T. M., & Jin, T. (2009). Synthesis and characterization of anti-HER2 Antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells. Sensors (Basel), 9(11), 9332–9364. https://doi.org/10.3390/s91109332

    Article  Google Scholar 

  119. Elakkiya V, Menon MP, Nataraj D, Biji P, Selvakumar R (2017) Optical detection of CA 15.3 breast cancer antigen using CdS quantum dot. IET Nanobiotechnol 11 (3):268–276. https://doi.org/10.1049/iet-nbt.2016.0012

  120. Li, K., Zhan, R., Feng, S. S., & Liu, B. (2011). Conjugated polymer loaded nanospheres with surface functionalization for simultaneous discrimination of different live cancer cells under single wavelength excitation. Analytical Chemistry, 83(6), 2125–2132. https://doi.org/10.1021/ac102949u

    Article  Google Scholar 

  121. Yang, H., Liang, H. J., Xie, Y. W., & Chen, Q. Y. (2018). A cancer cell turn-on protein-CuSMn nanoparticle as the sensor of breast cancer cell and CH3O-PEG-phosphatide. Chinese Chemical Letters, 29(10), 1528–1532. https://doi.org/10.1016/j.cclet.2018.02.011

    Article  Google Scholar 

  122. Hemmi, M., Ikeda, Y., Shindo, Y., Nakajima, T., Nishiyama, S., Oka, K., Sato, M., Hiruta, Y., Citterio, D., & Suzuki, K. (2018). Highly sensitive bioluminescent probe for thiol detection in living cells. Chemistry - An Asian Journal, 13(6), 648–655. https://doi.org/10.1002/asia.201701774

    Article  Google Scholar 

  123. Tao, Y., & Auguste, D. T. (2016). Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes. Biosensors & Bioelectronics, 81, 431–437. https://doi.org/10.1016/j.bios.2016.03.033

    Article  Google Scholar 

  124. Nguyen, P. D., Cong, V. T., Baek, C., & Min, J. (2017). Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosensors & Bioelectronics, 89(Pt 1), 666–672. https://doi.org/10.1016/j.bios.2015.12.031

    Article  Google Scholar 

  125. Chang, T. H., Tsai, M. F., Gow, C. H., Wu, S. G., Liu, Y. N., Chang, Y. L., Yu, S. L., Tsai, H. C., Lin, S. W., Chen, Y. W., Kuo, P. Y., Yang, P. C., & Shih, J. Y. (2017). Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C. Cancer Letters, 402, 190–202. https://doi.org/10.1016/j.canlet.2017.06.002

    Article  Google Scholar 

  126. Hizir, M. S., Robertson, N. M., Balcioglu, M., Alp, E., Rana, M., & Yigit, M. V. (2017). Universal sensor array for highly selective system identification using two-dimensional nanoparticles. Chemical Science, 8(8), 5735–5745. https://doi.org/10.1039/c7sc01522d

    Article  Google Scholar 

  127. Xue, Z., Xiao, L., Chen, H., Zhou, T., Qian, Y., Suo, J., Hua, Q., Zhou, B., Ye, R., Bao, X., & Zhu, J. (2018). Synthesis and evaluation of a novel ‘off-on’ chemical sensor based on rhodamine B and the 2,5-pyrrolidinedione moiety for selective discrimination of glutathione and its bioimaging in living cells. Bioorganic & Medicinal Chemistry, 26(8), 1823–1831. https://doi.org/10.1016/j.bmc.2018.02.030

    Article  Google Scholar 

  128. Lee, A., Kim, S. H., Lee, H., Kim, B., Kim, Y. S., & Key, J. (2018). Visualization of MMP-2 activity using dual-probe nanoparticles to detect potential metastatic cancer cells. Nanomaterials (Basel), 8(2), 1–12. https://doi.org/10.3390/nano8020119

    Article  Google Scholar 

  129. Miura, T., Mikami, H., Isozaki, A., Ito, T., Ozeki, Y., & Goda, K. (2018). On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s. Biomedical Optics Express, 9(7), 3424–3433. https://doi.org/10.1364/BOE.9.003424

    Article  Google Scholar 

  130. Densil, S., Chang, C. H., Chen, C. L., Mathavan, A., Ramdass, A., Sathish, V., Thanasekaran, P., Li, W. S., & Rajagopal, S. (2018). Aggregation-induced emission enhancement of anthracene-derived Schiff base compounds and their application as a sensor for bovine serum albumin and optical cell imaging. Luminescence, 33(4), 780–789. https://doi.org/10.1002/bio.3477

    Article  Google Scholar 

  131. Geng, Y., Goel, H. L., Le, N. B., Yoshii, T., Mout, R., Tonga, G. Y., Amante, J. J., Mercurio, A. M., & Rotello, V. M. (2018). Rapid phenotyping of cancer stem cells using multichannel nanosensor arrays. Nanomedicine, 14(6), 1931–1939. https://doi.org/10.1016/j.nano.2018.05.009

    Article  Google Scholar 

  132. Choi, Y. E., Kwak, J. W., & Park, J. W. (2010). Nanotechnology for early cancer detection. Sensors (Basel), 10(1), 428–455. https://doi.org/10.3390/s100100428

    Article  Google Scholar 

  133. Panesar, S., Weng, X., & Neethirajan, S. (2017). Toward point-of-care diagnostics of breast cancer: Development of an optical biosensor using quantum dots. IEEE Sensors Letters, 1(4), 1–4. https://doi.org/10.1109/lsens.2017.2727983

    Article  Google Scholar 

  134. Borghei, Y. S., Hosseini, M., Ganjali, M. R., & Hosseinkhani, S. (2018). A novel BRCA1 gene deletion detection in human breast carcinoma MCF-7 cells through FRET between quantum dots and silver nanoclusters. Journal of Pharmaceutical and Biomedical Analysis, 152, 81–88. https://doi.org/10.1016/j.jpba.2018.01.014

    Article  Google Scholar 

  135. Motaghi, H., Ziyaee, S., Mehrgardi, M. A., Kajani, A. A., & Bordbar, A. K. (2018). Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosensors & Bioelectronics, 118, 217–223. https://doi.org/10.1016/j.bios.2018.07.066

    Article  Google Scholar 

  136. Sharma, V., Kaur, N., Tiwari, P., & Mobin, S. M. (2018). Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging. Journal of Photochemistry and Photobiology B: Biology, 182, 137–145. https://doi.org/10.1016/j.jphotobiol.2018.04.006

    Article  Google Scholar 

  137. Ke, H., Zhang, X., Huang, C., & Jia, N. (2018). Electrochemiluminescence evaluation for carbohydrate antigen 15–3 based on the dual-amplification of ferrocene derivative and Pt/BSA core/shell nanospheres. Biosensors & Bioelectronics, 103, 62–68. https://doi.org/10.1016/j.bios.2017.12.032

    Article  Google Scholar 

  138. Xu, S., Gao, T., Feng, X., Fan, X., Liu, G., Mao, Y., Yu, X., Lin, J., & Luo, X. (2017). Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination. Biosensors & Bioelectronics, 97, 203–207. https://doi.org/10.1016/j.bios.2017.06.007

    Article  Google Scholar 

  139. Zhang, Y., Xiao, J., Lv, Q., Wang, L., Dong, X., Asif, M., Ren, J., He, W., Sun, Y., Xiao, F., & Wang, S. (2017). In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework. ACS Applied Materials & Interfaces, 9(44), 38201–38210. https://doi.org/10.1021/acsami.7b08781

    Article  Google Scholar 

  140. Liang, O., Wang, P., Xia, M., Augello, C., Yang, F., Niu, G., Liu, H., & Xie, Y. H. (2018). Label-free distinction between p53+/+ and p53 -/- colon cancer cells using a graphene based SERS platform. Biosensors & Bioelectronics, 118, 108–114. https://doi.org/10.1016/j.bios.2018.07.038

    Article  Google Scholar 

  141. Fang, L., Trigiante, G., Kousseff, C. J., Crespo-Otero, R., Philpott, M. P., & Watkinson, M. (2018). Biotin-tagged fluorescent sensor to visualize ‘mobile’ Zn(2+) in cancer cells. Chemical Communications (Cambridge, England), 54(69), 9619–9622. https://doi.org/10.1039/c8cc05425h

    Article  Google Scholar 

  142. Deshmukh, P. P., Navalkar, A., Maji, S. K., & Manjare, S. T. (2019). Phenylselenyl containing turn-on dibodipy probe for selective detection of superoxide in mammalian breast cancer cell line. Sensors and Actuators B-Chemical, 281, 8–13. https://doi.org/10.1016/j.snb.2018.10.072

    Article  Google Scholar 

  143. Wang, Z. Y., Wang, L. J., Zhang, Q., Tang, B., & Zhang, C. Y. (2018). Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chemical Science, 9(5), 1330–1338. https://doi.org/10.1039/c7sc04813k

    Article  Google Scholar 

  144. Mohammadinejad, A., Taghdisi, S. M., Es’haghi, Z., Abnous, K., & Mohajeri, S. A. (2019). Targeted imaging of breast cancer cells using two different kinds of aptamers -functionalized nanoparticles. European Journal of Pharmaceutical Sciences, 134, 60–68. https://doi.org/10.1016/j.ejps.2019.04.012

    Article  Google Scholar 

  145. Kannan, S., Begoyan, V. V., Fedie, J. R., Xia, S., Weselinski, L. J., Tanasova, M., & Rao, S. (2018). Metabolism-driven high-throughput cancer identification with GLUT5-specific molecular probes. Biosensors (Basel), 8(2), 1–12. https://doi.org/10.3390/bios8020039

    Article  Google Scholar 

  146. Fedie J, Kannan S, Begoyan V, Xia S, Shaikh S, Tanasova M, Rao S (2017) Fructose uptake-based rapid detection of breast cancer. 2017 IEEE Life Sciences Conference (LSC):162–165. https://doi.org/10.1109/LSC.2017.8268168

  147. Hakimian, F., Ghourchian, H., Hashemi, A. S., Arastoo, M. R., & Behnam Rad, M. (2018). Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Science and Reports, 8(1), 2943. https://doi.org/10.1038/s41598-018-20229-z

    Article  Google Scholar 

  148. Peng, J., Lai, Y., Chen, Y., Xu, J., Sun, L., & Weng, J. (2017). Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small (Weinheim an der Bergstrasse, Germany), 13(15), 1–11. https://doi.org/10.1002/smll.201603589

    Article  Google Scholar 

  149. Miao, X., Ning, X., Li, Z., & Cheng, Z. (2016). Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Science and Reports, 6, 32358. https://doi.org/10.1038/srep32358

    Article  Google Scholar 

  150. Feng, J., Wu, X., Ma, W., Kuang, H., Xu, L., & Xu, C. (2015). A SERS active bimetallic core–satellite nanostructure for the ultrasensitive detection of Mucin-1. Chemical Communications, 51(79), 14761–14763.

    Article  Google Scholar 

  151. Zeng, L., Pan, Y., Wang, S., Wang, X., Zhao, X., Ren, W., Lu, G., & Wu, A. (2015). Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo improved surface enhanced raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Applied Materials & Interfaces, 7(30), 16781–16791. https://doi.org/10.1021/acsami.5b04548

    Article  Google Scholar 

  152. Kaminska, A., Winkler, K., Kowalska, A., Witkowska, E., Szymborski, T., Janeczek, A., & Waluk, J. (2017). SERS-based immunoassay in a microfluidic system for the multiplexed recognition of interleukins from blood plasma: Towards picogram detection. Science and Reports, 7(1), 10656. https://doi.org/10.1038/s41598-017-11152-w

    Article  Google Scholar 

  153. Zheng, Z., Wu, L., Li, L., Zong, S., Wang, Z., & Cui, Y. (2018). Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. Talanta, 188, 507–515. https://doi.org/10.1016/j.talanta.2018.06.013

    Article  Google Scholar 

  154. Zhang, X., Xu, S., Jiang, S., Wang, J., Wei, J., Xu, S., Gao, S., Liu, H., Qiu, H., Li, Z., Liu, H., Li, Z., & Li, H. (2015). Growth graphene on silver–copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering. Applied Surface Science, 353, 63–70. https://doi.org/10.1016/j.apsusc.2015.06.084

    Article  Google Scholar 

  155. Rong, Z., Wang, C., Wang, J., Wang, D., Xiao, R., & Wang, S. (2016). Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosensors & Bioelectronics, 84, 15–21. https://doi.org/10.1016/j.bios.2016.04.006

    Article  Google Scholar 

  156. Lee, J. U., Kim, W. H., Lee, H. S., Park, K. H., & Sim, S. J. (2019). Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface-enhanced raman scattering sensor based on plasmonic head-flocked gold nanopillars. Small (Weinheim an der Bergstrasse, Germany), 15(17), e1804968. https://doi.org/10.1002/smll.201804968

    Article  Google Scholar 

  157. Sun, D., Ran, Y., & Wang, G. (2017). Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber bragg grating. Sensors (Basel), 17(11), 2559. https://doi.org/10.3390/s17112559

    Article  Google Scholar 

  158. Akbari Khorami, H., Wild, P., Brolo, A. G., & Djilali, N. (2016). pH-dependent response of a hydrogen peroxide sensing probe. Sensors and Actuators B: Chemical, 237, 113–119. https://doi.org/10.1016/j.snb.2016.06.094

    Article  Google Scholar 

  159. Ayyanar, N., Raja, G. T., Sharma, M., & Kumar, D. S. (2018). Photonic crystal fiber-based refractive index sensor for early detection of cancer. Ieee Sensors Journal, 18(17), 7093–7099. https://doi.org/10.1109/Jsen.2018.2854375

    Article  Google Scholar 

  160. Sharma P, Deshmukh P (2015) A photonic crystal sensor for analysis and detection of cancer cells. 2

  161. Faragasso, A., Bimbo, J., Stilli, A., Wurdemann, H. A., Althoefer, K., & Asama, H. (2018). Real-Time Vision-Based Stiffness Mapping (dagger). Sensors (Basel), 18(5), 1–13. https://doi.org/10.3390/s18051347

    Article  Google Scholar 

  162. Etayash, H., Jiang, K., Azmi, S., Thundat, T., & Kaur, K. (2015). Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Science and Reports, 5, 13967. https://doi.org/10.1038/srep13967

    Article  Google Scholar 

  163. Rasheed, P. A., & Sandhyarani, N. (2017). Electrochemical DNA sensors based on the use of gold nanoparticles: A review on recent developments. Microchimica Acta, 184(4), 981–1000. https://doi.org/10.1007/s00604-017-2143-1

    Article  Google Scholar 

  164. Crivianu-Gaita, V., Aamer, M., Posaratnanathan, R. T., Romaschin, A., & Thompson, M. (2016). Acoustic wave biosensor for the detection of the breast and prostate cancer metastasis biomarker protein PTHrP. Biosensors & Bioelectronics, 78, 92–99. https://doi.org/10.1016/j.bios.2015.11.031

    Article  Google Scholar 

  165. Xu, X., Chung, Y., Brooks, A. D., Shih, W. H., & Shih, W. Y. (2016). Development of array piezoelectric fingers towards in vivo breast tumor detection. Review of Scientific Instruments, 87(12), 124301. https://doi.org/10.1063/1.4971325

    Article  Google Scholar 

  166. Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. materials (Basel) 11 (3). https://doi.org/10.3390/ma11030448

  167. Laufer, S., Rasske, K., Stopfer, L., Kurzynski, C., Abbott, T., Platner, M., Towles, J., & Pugh, C. M. (2016). Fabric force sensors for the clinical breast examination simulator. Stud Health Technol Inform, 220, 193–198. https://doi.org/10.3233/978-1-61499-625-5-193

    Article  Google Scholar 

  168. Arcarisi L, Di Pietro L, Carbonaro N, Tognetti A, Ahluwalia A, De Maria C (2019) Palpreast—A new wearable device for breast self-examination. Applied Sciences 9 (3). https://doi.org/10.3390/app9030381

  169. Strauch, M., Ludke, A., Munch, D., Laudes, T., Galizia, C. G., Martinelli, E., Lavra, L., Paolesse, R., Ulivieri, A., Catini, A., Capuano, R., & Di Natale, C. (2014). More than apples and oranges–detecting cancer with a fruit fly’s antenna. Science and Reports, 4, 3576. https://doi.org/10.1038/srep03576

    Article  Google Scholar 

  170. Toneff, M. J., Sreekumar, A., Tinnirello, A., Hollander, P. D., Habib, S., Li, S., Ellis, M. J., Xin, L., Mani, S. A., & Rosen, J. M. (2016). The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biology, 14, 47. https://doi.org/10.1186/s12915-016-0269-y

    Article  Google Scholar 

  171. Foroutan F, Nikolova NK (2018) Active sensor for microwave tissue imaging with Bias-Switched Arrays. Sensors (Basel) 18 (5). https://doi.org/10.3390/s18051447

  172. Bahramiabarghouei, H., Porter, E., Santorelli, A., Gosselin, B., Popovic, M., & Rusch, L. A. (2015). Flexible 16 antenna array for microwave breast cancer detection. IEEE Transactions on Biomedical Engineering, 62(10), 2516–2525. https://doi.org/10.1109/TBME.2015.2434956

    Article  Google Scholar 

  173. Mirza, A. F., See, C. H., Danjuma, I. M., Asif, R., Abd-Alhameed, R. A., Noras, J. M., Clarke, R. W., & Excell, P. S. (2017). An active microwave sensor for near field imaging. Ieee Sensors Journal, 17(9), 2749–2757. https://doi.org/10.1109/Jsen.2017.2673961

    Article  Google Scholar 

  174. Khan M, Chatterjee D (2015) UWB microwave sensor array characterization for early detection of breast cancer.4–5

  175. Afyf, A., Bellarbi, L., Yaakoubi, N., Gaviot, E., Camberlein, L., Latrach, M., & Sennouni, M. A. (2016). Novel antenna structure for early breast cancer detection. Procedia Engineering, 168, 1334–1337. https://doi.org/10.1016/j.proeng.2016.11.365

    Article  Google Scholar 

  176. Santorelli, A., Porter, E., Kang, E., Piske, T., Popovic, M., & Schwartz, J. D. (2015). A Time-Domain microwave system for breast cancer detection using a flexible circuit board. Ieee Transactions on Instrumentation and Measurement, 64(11), 2986–2994. https://doi.org/10.1109/Tim.2015.2440565

    Article  Google Scholar 

  177. Garduno-Ramon MA, Vega-Mancilla SG, Morales-Henandez LA, Osornio-Rios RA (2017) Supportive noninvasive tool for the diagnosis of breast cancer using a thermographic camera as sensor. Sensors (Basel) 17 (3). https://doi.org/10.3390/s17030497

  178. Kaufman, Z., Paran, H., Haas, I., Malinger, P., Zehavi, T., Karni, T., Pappo, I., Sandbank, J., Diment, J., & Allweis, T. (2016). Mapping breast tissue types by miniature radio-frequency near-field spectroscopy sensor in ex-vivo freshly excised specimens. BMC Medical Imaging, 16(1), 57. https://doi.org/10.1186/s12880-016-0160-x

    Article  Google Scholar 

  179. Liu, D., Liu, X., Zhang, Y., Wang, Q., & Lu, J. (2016). Tissue phantom-based breast cancer detection using continuous near-infrared sensor. Bioengineered, 7(5), 321–326. https://doi.org/10.1080/21655979.2016.1197747

    Article  Google Scholar 

  180. Farag O, Mohamed M, Abd El Ghany M, Hofmann K (2018) Integrated sensors for early breast cancer diagnostics. 2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS):153–157. https://doi.org/10.1109/DDECS.2018.00034

  181. Izumi S, Yamamura S, Hayashi N, Toma M, Tawa K (2017) Dual-color fluorescence imaging of EpCAM and EGFR in breast cancer cells with a bull’s eye-type plasmonic chip. Sensors (Basel) 17 (12). https://doi.org/10.3390/s17122942

  182. Han, C., Zhang, A., Kong, Y., Yu, N., Xie, T., Dou, B., Li, K., Wang, Y., Li, J., & Xu, K. (2019). Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta, 1067, 115–128. https://doi.org/10.1016/j.aca.2019.03.054

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishnu Kirthi Arivarasan Ph.D or Atul Changdev Chaskar Ph.D .

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Chaskar, J., Ali, A. et al. Role of Sensor Technology in Detection of the Breast Cancer. BioNanoSci. 12, 639–659 (2022). https://doi.org/10.1007/s12668-021-00921-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00921-7

Keywords

Navigation