Skip to main content
Log in

Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present study was carried out to synthesize silver nanoparticles (AgNPs) using extracts of wild edible mushroom, Pleurotus giganteus, and to characterize the synthesized AgNPs and also to evaluate the synthesized AgNPs for antimicrobial and α-amylase inhibitory activity. Green synthesized AgNPs were characterized by UV–Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, Atomic force microscopy (AFM), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), selected area electron diffraction (SAED), Energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Antibacterial activity of AgNPs was studied by disc diffusion method along with minimum inhibitory concentration (MIC) and α-amylase inhibition assay of AgNPs were also studied. UV–Vis spectra of reaction mixture of AgNPs exhibited surface plasmon resonance peak around at 420 nm. FTIR study revealed that mainly carboxyl, hydroxyl, and amine functional groups were present in a mushroom extract which mainly reduced Ag+ to Ag0. AFM, TEM, SEM, SAED, and XRD pattern analysis supported that synthesized AgNPs were mostly spherical shaped within average size 2–20 nm and crystalline in nature. Biosynthesized AgNPs showed more antibacterial potentiality against Gram (–) bacteria. MIC of green synthesized AgNPs were found against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus as 12, 10, 14, and 15 μg/ml, respectively. α-Amylase inhibition assay of green synthesized AgNPs revealed that percent inhibition of α-amylase decreased with increasing concentration of green synthesized AgNPs. Wild edible mushroom P. giganteus can be used as a source of reducing and capping agents of spherical metallic silver nanoparticles which offers potential medicinal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun, T., Zhang, Y. S., Pang, B., Hyun, D. C., Yang, M., & Xia, Y. (2014). Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie, International Edition, 53, 12320–12364.

    Google Scholar 

  2. Jotterand, F., & Alexander, A. A. (2011). Biomedical nanotechnology: managing the “Known Unknowns”. In S. J. Hurst (Ed.), Theranostic cancer nanomedicine and informed consent (pp. 413–430). Illinois: Springer.

    Google Scholar 

  3. Etheridge, M. L., Campbell, S. A., Erdman, A. G., Haynes, C. L., Wolf, S. M., & McCullough, J. (2013). The big picture on nanomedicine products. Nanomedicine NBM, 9, 1–14.

    Article  Google Scholar 

  4. Sujatha, S., Tamilselvi, S., Subha, K., & Panneerselvam, A. (2013). On biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. International Journal of Current Microbiology and Applied Sciences, 2(12), 605.

    Google Scholar 

  5. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  Google Scholar 

  6. Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., & Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles. Advances and prospects. Russian Chemical Reviews, 77, 233.

    Article  Google Scholar 

  7. Roy, N., & Barik, A. (2001). Green synthesis of silver nanoparticles from unexploited weed resources. International Journal of Nanotechnology and Applications, 4(2), 95–101.

  8. Yadav, D., Suri, S., Chowdhary, A. A., Sikender, M., & Hemant, B. N. M. (2011). Novel approach: herbal remedies and natural products in pharmaceutical sciences as nano drug delivery systems. International Journal of Pharmacy and Technology, 3, 3092–3116.

    Google Scholar 

  9. Karthikeyan, S. (2006). Applications of nanotechnology in drug delivery systems for the treatment of cancer and diabetes. International Journal of Nanotechnology, 3(4), 557–580.

    Article  MathSciNet  Google Scholar 

  10. Dannis, S., & Dhruba, B. (2011). The role of nanotechnology in diabetes treatment: current and future perspectives. International Journal of Nanotechnology, 8(1), 53–65.

    Google Scholar 

  11. Daisy, P., & Saiprya, K. (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International Journal of Nanomedicine, 7, 1189–1202.

    Article  Google Scholar 

  12. Petit, C., Lixon, P., & Pileni, M. P. (1993). In situ synthesis of silver nanocluster in AOT reverse micelles. The Journal of Physical Chemistry, 97, 12974–12983.

    Article  Google Scholar 

  13. Sandmann, G., Dietz, H., & Plieth, W. (2000). Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. Journal of Electroanalytical Chemistry, 491, 78–86.

    Article  Google Scholar 

  14. Mallick, K. L., Witcomb, M. J., & Scurrell, M. S. (2005). Self-assembly of silver nanoparticles in a polymer solvent: Formation of a nanochain through nanoscale soldering. Materials Chemistry and Physics, 90, 221–224.

    Article  Google Scholar 

  15. Smetana, A. B., Klabunde, K. J., & Sorensen, C. M. (2005). Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of Colloid and Interface Science, 284, 521–526.

    Article  Google Scholar 

  16. Kannan, B. N., & Sakthivel, N. (2010). Advances in Colloid and Interface Science, 156, 1. https://doi.org/10.1016/j.cis.2010.02.001.

    Article  Google Scholar 

  17. Gardea-Torresdey, J. L., Parsons, J. G., Gomez, E., Peralta-Videa, J., Troiani, H. E., Santiago, P., & Yacaman, M. J. (2002). Nano Letters, 2, 397.

    Article  Google Scholar 

  18. Ahmad, R., Shahverdi, S. M., Shahverdi, H. R., Hossein, J., & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria. Biochem, 42, 919–923.

    Google Scholar 

  19. Basavaraja, S., Balaji, D. S., Arunkumar, L., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of ag nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164–1170.

    Article  Google Scholar 

  20. Bilal, D., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces. B, Biointerfaces, 65, 150.

    Article  Google Scholar 

  21. Jaidev, L. R., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles characterization and anti-microbial activity. Colloids and Surfaces. B, Biointerfaces, 8(2), 430–433.

    Article  Google Scholar 

  22. Bhattacharjee, S., Debnath, G., Roy Das, A., Saha, A. K., & Das, P. (2017). Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8, 1–6.

    Google Scholar 

  23. Sreekanth, T. V. M., & Lee, K. D. (2011). Green synthesis of silver nanoparticles from Carthamus tinctorius flower extract and evaluation of their antimicrobial and cytotoxic activities. Current Science, 7, 1046–1053.

    Google Scholar 

  24. Debnath, G., Dutta, S., Saha, A. K., & Das, P. (2016). Green synthesis, characterization and antibacterial activity of silver nanoparticles (Agnps) from grass leaf extract Paspalum conjugatum P.J. Berguis. Journal of Mycopathological Research, 54(3), 371–376.

    Google Scholar 

  25. Roh, Y., Lauf, R. J., Mcmillan, A. D., Zhang, C., Rawn, C. J., Bai, J., & Phelps, T. J. (2001). Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Communications, 118, 529–534.

    Article  Google Scholar 

  26. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Kumar, P. A. V., Alam Sastry, M. M. K., & Angew, M. (2001). Bioreduction of AuCl(4)(−) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles. Chem Int Ed, 40, 358.

    Article  Google Scholar 

  27. Philip, D. (2009). Biosynthesis of au, ag and au-ag nanoparticles using edible mushroom extract. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 73(2), 374–381.

    Article  Google Scholar 

  28. Nithya, R., & Ragunathan, R. (2009). Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest Journal of Nanomaterials and Biostructures, 4, 623–629.

    Google Scholar 

  29. Narasimha, G., Praveen, B., Mallikarjuna, K., & Raju, B. D. P. (2011). Mushrooms (Agaricus bisporus) mediated biosynthesis of sliver nanoparticles, characterization and their antimicrobial activity. International Journal of Nano Dimension, 2(1), 29–36.

  30. Karwa, A., Gaikwad, S., & Rai, M. K. (2011). Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. And their role as antimicrobials and antibiotic activity enhancers. Internationl Journal of Medicinal Mushrooms, 13, 483–489.

    Article  Google Scholar 

  31. Debnath, G., Das, P., & Saha, A. K. (2019). Characterization, antimicrobial and a-amylase inhibitory activity of silver nanoparticles synthesized by using mushroom extract of Lentinus tuber-regium. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. https://doi.org/10.1007/s40011-019-01076-y.

  32. Ul-Haq, M., Rathod, V., Singh, D., Singh, A. K., Ninganagouda, S., & Hiremath, J. (2015). Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanoscience and Nanotechnology: An International Journal, 5(1), 1–8.

    Google Scholar 

  33. Nagajyothi, P. C., Sreekanthb, J., Leec, T. V. M., & Leec, K. D. (2014). Mycosynthesis: Antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. Journal of Photochemistry and Photobiology B: Biology, 130, 299–304.

    Article  Google Scholar 

  34. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.

    Article  Google Scholar 

  35. Nickavara, B., & Yousefiana, N. (2009). Inhibitory effects of six Allium species on α-amylase enzyme activity. Iranian Journal of Pharmaceutical Research, 8(1), 53–57.

    Google Scholar 

  36. Kumar, D., Kumar, G., & Agrawal, V. (2018). Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.Bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitology Research, 117, 377–389.

  37. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 27, 1712–1720.

    Article  Google Scholar 

  38. Mulvaney, P. (1996). Surface Plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788–800.

    Article  Google Scholar 

  39. Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4, 29–35.

    Article  Google Scholar 

  40. Singh, R. P., Shukla, V. K., Yadav, R. S., Sharma, P. K., Singh, P. K., & Pandey, A. C. (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2, 313–317.

    Article  Google Scholar 

  41. Bhat, R., Deshpande, R., Ganachari, S. V., SungHuh, D., & Venkataraman, A. (2011). Photo-irradiated biosynthesis of silver nanoparticles using edible mushroom Pleurotus florida and their antibacterial activity studies. Bioinorganic Chemistry and Applications, 2011, 1–7.

    Article  Google Scholar 

  42. Chen, Q., Liu, G., Chen, G., Mi, T., & Tai, J. (2017). Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources, 12(1), 608–621.

    Google Scholar 

  43. Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 42, 4591–4602.

    Article  Google Scholar 

  44. Otari, S. V., Patil, R. M., Nadaf, N. H., Ghosh, S. J., & Pawar, S. H. (2014). Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environmental Science and Pollution Research, 21, 1503–1513.

    Article  Google Scholar 

  45. Singha, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988.

    Article  Google Scholar 

  46. Yugandhar, P., Haribabu, R., & Savithramma, N. (2015). Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech, 5, 1031–1039.

    Article  Google Scholar 

  47. Yugandhar, P., & Savithramma, N. (2016). Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. An endemic, endangered medicinal tree taxon. Applied Nanoscience, 6, 223–233.

    Article  Google Scholar 

  48. Hungund, B., Gayatri, S., Dhulappanavar, R., & Ayachit, N. H. (2015). Comparative evaluation of antibacterial activity of silver nanoparticles biosynthesized using fruit juices. Journal of Nanomedicine & Nanotechnology, 6, 2.

    Article  Google Scholar 

  49. Khair-ul-Bariyah, S., Ahmed, D., & Aujla, M. I. (2012). Comparative analysis of Ocimum basilicum and Ocimum sanctum: extraction techniques and urease and alpha-amylase inhibition. Pakistan Journal of Chemistry, 2(3), 1–8.

    Article  Google Scholar 

  50. Aruna, A., Nandhini, R., Karthikeyan, V., Bose, P., & Vijayalakshmi, K. (2014). Comparative anti-diabetic effect of methanolic extract of insulin plant (Costus pictus) leaves and its silver nanoparticles. Indo American Journal of Pharmaceutical Research, 4, 3217–3230.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Head of the Department of Botany, Tripura University for providing all sorts of facilities. The first author is thankful to the University Grant Commission, New Delhi, India for UGC-BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Debnath.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

No human or animal participants was involved in this study.

Informed Consent

Informed consent rules were not applicable to this research because no human participants were involved.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, G., Das, P. & Saha, A.K. Green Synthesis of Silver Nanoparticles Using Mushroom Extract of Pleurotus giganteus: Characterization, Antimicrobial, and α-Amylase Inhibitory Activity. BioNanoSci. 9, 611–619 (2019). https://doi.org/10.1007/s12668-019-00650-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-019-00650-y

Keywords

Navigation