Skip to main content
Log in

Easy and Fast Preparation of Large and Giant Vesicles from Highly Confined Thin Lipid Films Deposited at the Air–Water Interface

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Lipid vesicles are supramolecular structures of great interest for industrial and research applications. They can be used simply to compartmentalize solutions and pack active molecules in femtoliter-scale volumes or as highly sophisticated drug delivery vehicles and dynamic cell-size bioreactors. For these reasons, many methods for the production of vesicles have been developed, and some of them present several drawbacks, such as long working times and the requirement of specific equipment to perform the technique. In this work, we present a method to produce vesicles from highly confined lipid films at the air–water interface. The procedure involves two simple steps: the formation of the thin lipid film at the air–water interface and then brief sonication (10 s). These films are obtained by depositing different aliquots of lipid organic solutions at the air–liquid interface of round-bottom Eppendorfs tubes. The morphology of the highly confined lipid thin films was studied by optical microscopy noting the formation of non-uniform depositions at the air–liquid interface, with the presence of thicker portions close to the container sidewall. Post-sonication, the presence of vesicles composed of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) was confirmed using the complementary techniques of fluorescence microscopy and flow cytometry. The size distribution investigations carried out by flow cytometry revealed the optimal concentrations to favor the formation of giant vesicles (GVs). Furthermore, we investigated aqueous phase encapsulation by adding calcein or green fluorescent protein (GFP) to the aqueous phase then characterized by fluorescence microscopy and flow cytometry. We demonstrate a fast and easy method for producing vesicles including GVs on demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295, 2418–2421.

    Article  Google Scholar 

  2. Chiruvolu, S., Walker, S., Israelachvili, J., Schmitt, F. J., Leckband, D., & Zasadzinski, J. A. (1994). Higher-order self-assembly of vesicles by site-specific binding. Science, 264, 1753–1756.

    Article  Google Scholar 

  3. Sunami, T., Sato, K., Matsuura, T., Tsukada, K., Urabe, I., & Yomo, T. (2006). Femtoliter compartment in liposomes for in vitro selection of proteins. Analytical Biochemistry, 357, 128–136.

    Article  Google Scholar 

  4. Jung, S.-Y., Liu, Y., & Collier, C. P. (2008). Fast mixing and reaction initiation control of single-enzyme kinetics in confined volumes. Langmuir, 24, 4439–4442.

    Article  Google Scholar 

  5. Deng, Y., Wang, Y., Holtz, B., Li, J., Traaseth, N., Veglia, G., Stottrup, B. J., Elde, R., Pei, D., Guo, A., & Zhu, X.-Y. (2008). Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays. Journal of the American Chemical Society, 130, 6267–6271.

    Article  Google Scholar 

  6. Bagatolli, L. A. (2009). Membranes and fluorescence microscopy. In Reviews in fluorescence 2007 (pp. 33–51). New York: Springer.

    Chapter  Google Scholar 

  7. Yang, P., Dimova, R. (2011). Nanoparticle synthesis in vesicle microreactors. In Biomimetic based applications, INTECH Open Access Publisher.

  8. Wesołowska, O., Michalak, K., Maniewska, J., & Hendrich, A. B. (2009). Giant unilamellar vesicles—a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochimica Polonica, 56, 33–39.

    Google Scholar 

  9. Dua, J. S., Rana, A. C., & Bhandari, A. K. (2012). Liposome: methods of preparation and applications. International Journal Pharmaceutical Studies Research, 3, 14–20.

    Google Scholar 

  10. Manley, S., Gordon, V. D., et al. (2008). Current Protocols in Cell Biology, 40, 24.3:24.3.1–24.324.3.13.

    Google Scholar 

  11. Rodriguez, N., Pincet, F., & Cribier, S. (2005). Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids and Surfaces, B: Biointerfaces, 42, 125–130.

    Article  Google Scholar 

  12. Pautot, S., Frisken, B. J., & Weitz, D. A. (2003). Production of unilamellar vesicles using an inverted emulsion. Langmuir, 19, 2870–2879.

    Article  Google Scholar 

  13. Hadorn, M., Boenzli, E., Sørensen, K. T., De Lucrezia, D., Hanczyc, M. M., & Yomo, T. (2013). Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. Langmuir, 29, 15309–15319.

    Article  Google Scholar 

  14. Walde, P., Cosentino, K., Engel, H., & Stano, P. (2010). Giant vesicles: preparations and applications. Chembiochem, 11, 848–865.

    Article  Google Scholar 

  15. Langmuir, I. (1917). Constitution and fundamental properties of solids and liquids. II. Liquids. Journal of the American Chemical Society, 39, 1848–1906.

    Article  Google Scholar 

  16. Kaganer, V. M., Mohwald, H., & Dutta, P. (1999). Structure and phase transitions in Langmuir monolayers. Reviews of Modern Physics, 71, 779–819.

    Article  Google Scholar 

  17. Pichot, R., Watson, R. L., & Norton, I. T. (2013). Phospholipids at the interface: current trends and challenges. International Journal of Molecular Sciences, 14, 11767–11794.

    Article  Google Scholar 

  18. Lee, K. Y. C. (2008). Collapse mechanisms of Langmuir monolayers. Annual Review of Physical Chemistry, 59, 771–791.

    Article  Google Scholar 

  19. Gopal, A., & Lee, K. Y. C. (2001). Morphology and collapse transitions in binary phospholipid monolayers. The Journal of Physical Chemistry. B, 105, 10348–10354.

    Article  Google Scholar 

  20. Dua, J. S., Rana, A. C., & Bhandari, A. K. (2012). Liposome: methods of preparation and applications. IJPSR, 3, 14–20.

    Google Scholar 

  21. Vácha, R., Jurkiewicz, P., Petrov, M., Berkowitz, M. L., Böckmann, R. A., Barucha-Kraszewska, J., Hof, M., & Jungwirth, P. (2010). Mechanism of interaction of monovalent ions with Phosphatidylcholine lipid membranes. The Journal of Physical Chemistry. B, 114, 9504–9509.

    Article  Google Scholar 

  22. Sackett, D. L., & Wolff, J. (1987). Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Analytical Biochemistry, 167, 228–234.

    Article  Google Scholar 

  23. Dutta, A. K., Kamada, K., & Ohta, K. (1996). Spectroscopic studies of nile red in organic solvents and polymers. Journal of Photochemistry and Photobiology, A: Chemistry, 93, 57–64.

    Article  Google Scholar 

  24. Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). Nile Red: a selective fluorescent stain for intracellular lipid droplets. The Journal of Cell Biology, 100, 965–973.

    Article  Google Scholar 

  25. Fowler, S. D., & Greenspan, P. (1985). Application of Nile Red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. The Journal of Histochemistry and Cytochemistry, 33, 833–836.

    Article  Google Scholar 

  26. Nishimura, K., Hosoi, T., Sunami, T., Toyota, T., Fujinami, M., Oguma, K., Matsuura, T., Suzuki, H., & Yomo, T. (2009). Population analysis of structural properties of giant liposomes by flow cytometry. Langmuir, 25, 10439–10443.

    Article  Google Scholar 

  27. Rugonyi, S., Smith, E. C., & Hall, S. B. (2004). Transformation diagrams for the collapse of a phospholipid monolayer. Langmuir, 20, 10100–10106.

    Article  Google Scholar 

  28. Smith, E. C., Crane, J. M., Laderas, T. G., & Hall, S. B. (2003). Metastability of a supercompressed fluid monolayer. Biophysical Journal, 85, 3048–3057.

    Article  Google Scholar 

  29. Schief, W. R., Antia, M., Discher, B. M., Hall, S. B., & Vogel, V. (2003). Liquid-crystalline collapse of pulmonary surfactant monolayers. Biophysical Journal, 84, 3792–3806.

    Article  Google Scholar 

  30. Baoukina, S., Monticelli, L., Risselada, H. J., Marrink, S. J., & Tieleman, D. P. (2008). The molecular mechanism of lipid monolayer collapse. PNAS, 105, 10803–10808.

    Article  Google Scholar 

  31. Finkelstein, A., & Cass, A. (1968). Permeability and electrical properties of thin lipid membranes. The Journal of General Physiology, 52, 145–172.

    Article  Google Scholar 

  32. Simonsen, A. C., & Bagatolli, L. A. (2004). Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration. Langmuir, 20, 9720–9728.

    Article  Google Scholar 

  33. Fukuma, T., Higgins, M. J., & Jarvis, S. P. (2007). Direct imaging of individual intrinsic hydration layers on lipid bilayers at Ångstrom resolution. Biophysical Journal, 92, 3603–3609.

    Article  Google Scholar 

  34. Oku, N., Kendall, D. A., & MacDonald, R. C. (1982). A simple procedure for the determination of the trapped volume of liposomes. Biochimica et Biophysica Acta, 691, 332–340.

    Article  Google Scholar 

  35. Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P., & Zare, R. N. (1996). Rapid preparation of giant unilamellar vesicles. Proceedings of the National Academy of Sciences of the United States of America, 93, 11443–11447.

    Article  Google Scholar 

  36. Hadorn, M., Boenzli, E., & Eggenberger Hotz, P. (2011). A quantitative analytical method to test for salt effects on giant unilamellar vesicles. Scientific Reports, 1, 168.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof Tetsuya Yomo for informative discussions. LAB wants to thank Program Prometeo, SENESCYT, Ecuador, for support.

Funding

V.B and M.M.H. were financially supported in part by the European Commission FP7 Future and Emerging Technologies Proactive (EVOBLISS 611640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Bavastrello.

Electronic supplementary material

ESM 1

(DOC 11711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavastrello, V., Caliari, A., Pesce, I. et al. Easy and Fast Preparation of Large and Giant Vesicles from Highly Confined Thin Lipid Films Deposited at the Air–Water Interface. BioNanoSci. 8, 207–217 (2018). https://doi.org/10.1007/s12668-017-0464-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0464-5

Keywords

Navigation