Skip to main content

Advertisement

Log in

Improving the Tensile Shear Load of Al–Mg–Si Alloy FSLW Joint by BPNN–GA

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In order to obtain the joint with a high tensile shear load, the small penetration of tool pin into the lower sheet was applied during friction stir lap welding. The tensile shear loads of the Al–Mg–Si aluminum alloy joint under different process parameter combinations were optimized by combining back propagation neural network and genetic algorithm. The result showed that the hook bent down and the height of cold lap was small. Under the external tension load, the crack propagated along the lap interface or extended downward after reaching the highest point along the cold lap. With the increase of heat input, the tensile fracture mode of joint was more easily obtained. The highest tensile shear load of the joint reached 12.45kN, which was increased by 6.9% than the maximum value before optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Çam G and İpekoğlu G, Int J Adv Manuf Technol 91 (2017) 1851.

    Article  Google Scholar 

  2. Owolabi G M, Thom M, Ajide O O, Kumar N, Odeshi A G and Warner G, Trans Indian Inst Met 72 (2019) 2623.

    Article  CAS  Google Scholar 

  3. Singh G, Singh K and Singh J, Trans Indian Inst Me 64 (2011) 325.

    Article  CAS  Google Scholar 

  4. Ma Z, Li Q, Ma L, Hu W and Xu B, Trans Indian Inst Met 72 (2019) 1721.

    Article  CAS  Google Scholar 

  5. Yue Y M, Zhou Z L, Ji S D, Zhang L G and Li Z W, Int J Adv Manuf Technol 90 (2017) 2597.

    Article  Google Scholar 

  6. Upadhyay P, Li X and Roosendaal T, in Friction Stir Welding and Processing X, (ed) Hovanski Y, Mishra R, Sato Y, Upadhyay P and Yan D, Springer, Cham Press (2019), p 67–75.

  7. Ji S D, Ji, Wen Q and Li Z W, J Mater Sci Technol 48 (2020) 23.

    Article  Google Scholar 

  8. Cederqvist L and Reynolds A P, Weld J (Research supplement) 80 (2001) 281.

    Google Scholar 

  9. Ge Z H, Gao S S, Ji S D and Yan D J, Int J Adv Manuf Technol 98 (2018) 1461.

    Article  Google Scholar 

  10. Bandi, A, and Bakshi, S R, Metall Mater Trans A 51 (2020) 6269.

    Article  CAS  Google Scholar 

  11. Wang M, Zhang H J, Zhang J B, Zhang X and Yang L, J Mater Eng Perform 23 (2014) 1885.

    Google Scholar 

  12. Liu Z L, Yang K and Ji S D, J Mater Eng Perform 27 (2018) 5611.

    Google Scholar 

  13. Bozkurt Y, Mater Des 35 (2012) 440.

    Article  CAS  Google Scholar 

  14. Ahmadi H, Arab N B M and Ghasemi F A, J Mech Sci Technol 28 (2014) 279.

    Article  Google Scholar 

  15. Safeen W, Hussain S, Wasim A, Jahanzaib M, Aziz H and Abdalla H, Int J Adv Manuf Technol 87 (2016) 1765–1781.

    Article  Google Scholar 

  16. Song Q, Ren Z X, Ji S D, Niu S Y, Wen Q and Chen M F, Adv Eng Mater 21 (2019) 1900973.

    Article  CAS  Google Scholar 

  17. Hu W, Ma Z W, Ji S D, Song Q, Chen M F and Jiang W H, J Mater Sci Technol 53 (2020) 41.

    Article  Google Scholar 

  18. Darzi Naghibi H, Shakeri M and Hosseinzadeh M, Trans Indian Inst Met 69 (2016) 897.

    Article  Google Scholar 

  19. Gupta S K, Pandey K and Kumar R. Proc IMechE Part L: J Materials: Design and Applications 232 (2016) 341.

    Google Scholar 

  20. Tansel I N, Demetgul M, Okuyucu H and Yapici A, Int J Adv Manuf Technol 48 (2010) 95.

    Article  Google Scholar 

  21. Tansel I N, Ozcelik B, Bao W Y, Chen P, Rincon D, Yang S Y and Yenilmez A, Int J Mach Tools Manuf 46 (2006) 26.

    Article  Google Scholar 

  22. Narayanareddy V V, Chandrasekhar N, Vasudevan M, Muthukumaran S and Vasantharaja P, Metall Mater Trans B 47 (2016) 710.

    Article  Google Scholar 

  23. Ding S, Su C and Yu J, Artif Intell Rev 36 (2011) 154.

    Article  CAS  Google Scholar 

  24. Simar A, Bréchet Y, Meester B, Denquin A, Gallais C, Pardoen T, Prog Mater Sci 57 (2012) 113.

    Article  Google Scholar 

  25. Yoon T J, Jung B H and Kang C Y, Mater Des 83 (2015) 383.

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Natural Science Foundation of Liaoning Province (No. 2019-ZD-0231), the Education Department Foundation of Liaoning Province (No. JYT2020039) and the Plan of Rejuvenating Liaoning Talents (No. XLYC1808044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Song or Shude Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Hu, W., Song, Q. et al. Improving the Tensile Shear Load of Al–Mg–Si Alloy FSLW Joint by BPNN–GA. Trans Indian Inst Met 74, 1521–1528 (2021). https://doi.org/10.1007/s12666-021-02240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02240-7

Keywords

Navigation