Skip to main content
Log in

Effect of Heat on Organic and Inorganic Components in Some Non-coking Lower Gondwana Coals

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The concentration of different maceral groups and minerals in coal influence the quality as each of them behaves differently during heat treatment. The purpose of this study is to know how these are behaving at different temperature conditions. Therefore, various macerals and minerals were concentrated by using heavy liquids of different specific gravities (1.3, 1.7 and 1.9). The generated density fractions were treated with heat at 400, 600, 800 and 1000 °C. All the density fractions at various temperature conditions along with feed sample were investigated by optical microscopy, X-ray diffractometry, electron-probe microanalysis and Fourier transform infrared spectroscopy analysis. The results suggest that fusinite and sclerotinite are the most stable macerals, whereas quartz is the most stable mineral. Telocollinite is found to be oxidized very prominently at 400 °C. Siderite and pyrite alter to form hematite above 400 °C and 800 °C, respectively. Kaolinite converts to metakaolin followed by mullite with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thomas L, Coal geology (2nd ed), Wiley, Chichester (2013).

    Google Scholar 

  2. Querol X, Turiel J L F, and Soler L, Mineral Mag 58 (1994) 119.

    Article  CAS  Google Scholar 

  3. Vassileva C G, and Vassilev S V, Fuel Process Technol 87 (2006) 1095.

    Article  CAS  Google Scholar 

  4. Dyk J C V, Benson S A, Laumb M L, and Waanders B, Fuel 88 (2009) 1057.

    Article  Google Scholar 

  5. Nag D, Das B, and Saxena V K, Int J Coal Prep Util 36 (2016) 1.

    Article  CAS  Google Scholar 

  6. White A, Davies M R, and Jones S, Fuel 68 (1989) 511.

    Article  CAS  Google Scholar 

  7. Xie K C, Zhang Y F, Li C Z, and Ling D Q, Fuel 70 (1991) 474.

    Article  CAS  Google Scholar 

  8. Blanc P, Valisolalao J, Albrecht P, Kohut J P, Muller J F, and Duchene J M, Energ Fuel 5 (1991) 875.

    Article  CAS  Google Scholar 

  9. Sun Q, Li W, Chen H, Li B, Fuel 82 (2003) 669.

    Article  CAS  Google Scholar 

  10. Morga R, Int J Coal Geol 84 (2010) 1.

    Article  CAS  Google Scholar 

  11. Kruszewska K, Fuel 68 (1989) 753.

    Article  CAS  Google Scholar 

  12. Yavorski I A, Alaev G P, Pugach L I, Talankin L P, Teplo 15 (1968) 69.

    Google Scholar 

  13. Sahoo M, Bhowmick T, Mishra V, Pal S, Sharma M, and Chakravarty S, Int J Coal Prep Util (2019). https://doi.org/10.1080/19392699.2019.1678470.

  14. Nandi B N, Brown T D, and Lee G K, Fuel 56 (1977) 125.

    Article  CAS  Google Scholar 

  15. Misra B K, and Singh B D, Int J Coal Geol 25 (1994) 265.

    Article  CAS  Google Scholar 

  16. Nankervis J C, and Furlong R B, Fuel 59 (1980) 425.

    Article  CAS  Google Scholar 

  17. Raask E, Mineral Impurities in Coal Combustion: Behavior, Problems, and Remedial Measures. Hemisphere Publishing Corporation, Washington (1985), p 484.

  18. Burchill P, Richards D G, Warrington S B, Fuel 69 (1990) 950.

    Article  CAS  Google Scholar 

  19. Vassilev S V, Eskenazy G M, Tarassov M P, and Bulgarian V I, Geologica Balc 25 (1995) 111.

    Article  CAS  Google Scholar 

  20. Vassileva C G, and Vassilev S V, Fuel Process Technol 86 (2005) 1297.

    Article  CAS  Google Scholar 

  21. Ozbas K E, and Kok M V, Energy Sources 25 (2003) 33.

    Article  CAS  Google Scholar 

  22. Acma H H, Yaman S, Kucukbayrak S, and Okutan H, Energy Sources 28 (2006) 135.

    Article  Google Scholar 

  23. Giroux L, Charland J P, and MacPhee J A, Energ Fuel 20 (2006) 1988.

    Article  CAS  Google Scholar 

  24. Kinghorn R R F, and Rahman M, J Pet Geol 2 (1980) 449.

    Article  Google Scholar 

  25. Dyrkacz G R, and Horwitz E P, Fuel 61 (1982) 3.

    Article  CAS  Google Scholar 

  26. Holuszko M, Kumar A, Kuppusamy V K, and Engwayu J, Int J Coal Prep Util (2018). https://doi.org/10.1080/19392699.2018.1490277.

  27. Zhang L, Hower J C, Liu W, and Men D, Int J Coal Prep Util (2016) 1.

  28. Vassileva C G, and Vassilev S V, Cr Acad Bulg Sci 55 (2002) 47.

    CAS  Google Scholar 

  29. Nayak B, J Geol Soc India 81 (2013) 203.

    Article  CAS  Google Scholar 

  30. Bhowmick T, Nayak B, and Varma A K, Fuel 208 (2017) 91.

    Article  CAS  Google Scholar 

  31. Koenig J L, Appl Spectrosc 29 (1975) 293.

    Article  CAS  Google Scholar 

  32. Solomon P R, and Carangelo R M, Fuel 67 (1988) 949.

    Article  CAS  Google Scholar 

  33. Saikia B K, Boruah R K, and Gogoi P K, Bull Mater Sci 30 (2007) 421.

    Article  CAS  Google Scholar 

  34. Cheng J, Zhang Y, Wang T, Norris P, Chen W Y, and Pan W P, Energy Fuels 31 (2017) 7042.

    Article  CAS  Google Scholar 

  35. Xuguang S, Spectrochim. Acta A 62 (2005) 557.

    Article  Google Scholar 

  36. Yao S, Zhang K, Jiao K, and Hu W, Energ Explor Exploit 29 (2011) 1.

    Article  Google Scholar 

  37. Balachandran M, Am J Analyt Chem 5 (2014) 367.

    Article  CAS  Google Scholar 

  38. Orrego J A, Hernandez R C, and Mejıa-Ospino E, Rev Mex Fis 56 (2010) 251.

    CAS  Google Scholar 

  39. Coal India Limited, Coal atlas of India. Central Mine Planning and Design Institute Limited, Ranchi (1993).

    Google Scholar 

  40. Bureau of Indian Standard (BIS), IS: 9127 (First revision) New Delhi: Bureau of Indian Standard (2002).

  41. Stach E, Mackowsky M-Th, Teichmuller M, Taylor G H, Chandra D, and Teichmuller R, Stach’s textbook of coal petrology. (3rd ed.), Gebrüder Borntraeger, Berlin (1982).

  42. Singh M P, Singh P K, and Singh A K, J Geol Soc India 61 (2003) 419.

    Google Scholar 

  43. Misra S K, and Mohanty J K, J Geol Soc India 66 (2005) 475.

    Google Scholar 

  44. Singh A K, J Geol Soc India 87 (2016) 525.

    Article  CAS  Google Scholar 

  45. Ferrari B, Glückauf 74 (1938) 765.

    CAS  Google Scholar 

  46. Ammossov I L, Eremin I V, Sukhenko S F, and Oshurkova L S, Koks Khim 12 (1957) 9.

    Google Scholar 

  47. Pan Y X, Zhu R X, and Banerjee S K, J Geophys Res 105 (2000) 783.

    Article  Google Scholar 

  48. Reifenstein A P, Kahraman H, Coin C D A, Calos N J, Miller G, and Uwins P, Fuel 78 (1999) 1449.

    Article  CAS  Google Scholar 

  49. Lee S, Kim Y J, and Moon H S, J Am Ceram Soc 82 (1999) 2841.

    Article  CAS  Google Scholar 

  50. Rao C N R, Chemical Application of Infrared Spectroscopy, Academic Press, New York (1963).

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, CSIR-IMMT, for permitting to publish this paper. We are also thankful to Dr. S. I. Angadi, Dr. B. K. Nayak and Dr. D. Satpathy of Mineral Processing Department for extending their support in the analytical work. The first author (R. Bhatta) is indebted to the University Grants Commission for the financial support in terms of the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilima Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatta, R., Dash, N. & Nayak, B. Effect of Heat on Organic and Inorganic Components in Some Non-coking Lower Gondwana Coals. Trans Indian Inst Met 74, 387–397 (2021). https://doi.org/10.1007/s12666-020-02168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02168-4

Keywords

Navigation