Skip to main content
Log in

Smelting Reduction Characteristics and Mechanism of Vanadium–Titanium Magnetite Carbon-Bearing Pellet

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Vanadium–titanium magnetite is one kind of important strategic resources. However, there exist some common problems in the current smelting process of vanadium–titanium magnetite. In the present paper, we propose the rotary kiln pre-reduction and bath smelting process reasonably for smelting vanadium–titanium magnetite. The smelting reduction test of vanadium–titanium magnetite carbon-bearing pellet in the bath was conducted under laboratory condition, and the effect of end slag basicity, the smelting temperature, the smelting time and the amount of pulverized coal on the separation of slag–iron and the quality of hot metal were mainly investigated. The results showed that the reasonable smelting parameters for vanadium–titanium magnetite smelting of the process introduced in the paper were above 1450 °C of smelting temperature, above 0.8 of basicity of slag, 30–40 min of smelting time and 20–22% of coal addition. Nevertheless, the sulfur content of the iron particle was higher than the demand of steelmaking and it needed further desulfurization. The process is economically feasible for smelting vanadium–titanium magnetite, which can recover the vanadium and titanium resources effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu J X, Cheng G J, Liu Z G, Chu M S, and Xue X X, Steel Res Int 86 (2015) 808.

    Article  CAS  Google Scholar 

  2. Bosi F, Halenius U, and Skogby H, Am Mineral 94 (2009) 181.

    Article  CAS  Google Scholar 

  3. Zhang Y Y, Lv W, Lv X W, Li S P, Bai C G, Song B, and Han K X, Int J Min Met Mater 24 (2017) 240.

    Article  CAS  Google Scholar 

  4. Xue X, and Wu D H, China Metall 22 (2012) 22 (in Chinese).

    Google Scholar 

  5. Anamaeric B, and Kawatra S K, Min Metall Explor 29 (2012) 211.

    CAS  Google Scholar 

  6. Sarkar S, Bhattacharya R, Roy G G, and Sen P K, Steel Res Int 89 (2017) 1.

    Google Scholar 

  7. Li W, Fu G Q, Chu M S, and Zhu M Y, Steel Res Int 8(2016) 1.

    Google Scholar 

  8. Sun H Y, Wang J S, Han Y H, She X F, and Xue Q G, Int J Miner Process 125 (2013) 122.

    Article  CAS  Google Scholar 

  9. Li W, Wang N, Fu G Q, Chu M S, and Zhu M Y, Powder Technol 310 (2017) 343.

    Article  CAS  Google Scholar 

  10. Jiang T, Xu J, Guan S F, and Xue X X, J Northeast Univ 36 (2015) 77 (in Chinese).

    CAS  Google Scholar 

  11. Han J Q, Zhang L, Cui D, Chen X, and Xu G F, J Mater Metall 17 (2018) 101 (in Chinese).

    Google Scholar 

  12. Li R M, Liu T, Zhang Y M, Huang J, Hu P C, and Shi Q H, Non-ferr Metals (Ext Metall) 12 (2017) 31 (in Chinese).

    Google Scholar 

  13. Feng Q M, Shao Y H, Ou L M, Zhang G F, and Lu Y P, Non-ferr Metals (Ext Metall) 62 (2010) 57 (in Chinese).

    CAS  Google Scholar 

  14. Yuan Y Z, Zhang Y M, Liu T, Hu P C, and Zheng Q S, J Clean Prod 234 (2019) 494.

    Article  CAS  Google Scholar 

  15. Zhang J H, Zhang W, and Xue Z L, Metals 21 (2019) 1.

    Google Scholar 

  16. Li J, Zhang Y M, Du D Y, and Liu Z Y, J Clean Prod 143 (2017) 582.

    Article  CAS  Google Scholar 

  17. Zhang Y Y, Zhao J, Qi Y H, Cheng X L, and Zou Z S, Int J Min Met Mater 22 (2015) 381.

    Article  CAS  Google Scholar 

  18. Gao C J, Jiang B, Gao Z M, Huang K, and Zhu H M, Rare Metals 29 (2010) 547.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFB0603800 & 2017YFB0603802; National Key Research and Development Program of China under Grant No. 2017YFC0210301; National Natural Science Foundation of China under Grant No. 51234003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmao Qie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qie, J., Gao, J., Zhang, Y. et al. Smelting Reduction Characteristics and Mechanism of Vanadium–Titanium Magnetite Carbon-Bearing Pellet. Trans Indian Inst Met 74, 341–353 (2021). https://doi.org/10.1007/s12666-020-02132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02132-2

Keywords

Navigation