Skip to main content
Log in

Experimental and Theoretical Study of Porous Al2O3

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this report, we have investigated the structural, electronic and magnetic properties of porous alumina using theoretical results and experimental measurements. To simulate the bulk and porous Al2O3 supercell in a monoclinic structure with C2/m space group, the DFT method was employed. The results show that the porous alumina has a lower band gap compared to the nonporous alumina, and the DFT simulation confirms the existence of ferromagnetic properties in porous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nemati M, Santos A, and Losic D, Sensors 18 (2018) 470.

    Article  Google Scholar 

  2. Wen L, Xu R, Mi Y, and Lei Y, Nat Nanotechnol 12 (2017) 244.

    Article  CAS  Google Scholar 

  3. Lim S, Law C, Marsal L, and Santos A, Sci Rep 8(1) (2018) 9455.

    Article  Google Scholar 

  4. Han E D, Park C W, and Lee S H, Cellulose 27 (2020) 2685.

    Article  CAS  Google Scholar 

  5. Pooladi R, Rezaei H, Aezami M, and Sayyar M R, Trans Indian Inst Met 62 (2009) 241.

    Article  CAS  Google Scholar 

  6. Taheriniya S, Parhizgar S S, and Sari A H, Results Phys 9 (2018) 1428.

    Article  Google Scholar 

  7. Hun C W, Chiu Y J, Luo Z, Chen C C, and Chen S H. Appl Sci 8 (2018) 1055.

    Article  Google Scholar 

  8. Tiong T, Ooi L, Dee C, Hamzah A, and Majlis B, Nanotechnology 29(43) (2018) 435601.

    Article  Google Scholar 

  9. Kumeria T, and Losic D, Nanoscale Res Lett 7 (2012) 88.

    Article  Google Scholar 

  10. Law C S, Lim S Y, Andrew D, Lluís A, Marsal F, and Santos A, Nanoscale 10 (2018) 14139.

    Article  CAS  Google Scholar 

  11. Masuda T, Asoh H, Haraguchi S, and Ono S, Materials 8(3) (2015) 1350.

    Article  CAS  Google Scholar 

  12. Wang L, Li G, Liu X, Xia S, and Jia H, J Electrochem Soc 164 (6) (2017) 117.

    Article  Google Scholar 

  13. Lin Y, Lin Q, Liu X, Gao Y, He J, Wang W, and Fan Z. Nanoscale Res Lett 10 (2015) 495.

    Article  Google Scholar 

  14. Runge J M, J Mater Sci Nanotechnol 1(1) (2014) S108.

    Google Scholar 

  15. Rehman A, Ashraf M W, Shaikh H, Alhamidi A, Ramay S M, and Saleem M, Ceram Int 46 (2020) 7681.

    Article  Google Scholar 

  16. Knoll W, Azzaroni O, Duran H, Kunze-Liebhäuser J, Lau K H A, Reimhult E, and Yameen B, Anal Bioanal Chem 412 (2020) 3299.

    Article  CAS  Google Scholar 

  17. Yaremko O, Adamiv V, Kyryk M, Zhukovska D, Vistak M, Vitusevich S, Andrushchak A, Neumann E, Shchur Y, and Teslyuk I, IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET) (2020) 882.

  18. Sun H, Zhang H, Hou X, Liu L, Wu T, and Yang S, J Mat Chem C 1 (2013) 3569.

    Article  CAS  Google Scholar 

  19. Fedorov A S, Visotin M A, Kholtobina A S, Kuzubov A A, Mikhaleva A S, and Hsu H S, J Magn Magn Mater 440 (2017) 5.

    Article  CAS  Google Scholar 

  20. Albanese E, Puigdollers A R, and Pacchioni G. ACS Omega 3 (2018) 5301.

    Article  CAS  Google Scholar 

  21. Kumar P, Sharma V, Reboredo F A,Yang L, and Pushpa R, Sci Rep 6 (2016) 31841.

    Article  CAS  Google Scholar 

  22. Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, and Rao C N R, Phys Rev B 74 (2006) 161306.

    Article  Google Scholar 

  23. Goudarzi M, Parhizgar S S, and Beheshtian J, Opto Electron Rev 27 (2019) 130.

    Article  Google Scholar 

  24. Liu D, Clark S J, and Robertson J, Appl Phys Lett 96 (2010) 032905.

    Article  Google Scholar 

  25. Levin I, Bendersky L A, Brandon D G, and Rühle M, Acta Mater 45 (1997) 3659.

    Article  CAS  Google Scholar 

  26. Lee C, Cho E, Lee H, Seol K S, and Han S, Phys Rev B 76 (2007) 245110.

    Article  Google Scholar 

  27. Borosy A P, Silvi B, Nortier P, and Allavena M, J Phys Chem 98 (1994) 13189.

    Article  CAS  Google Scholar 

  28. Zhou R S, and Snyder R L, Acta Crystallogr Sect B 47(5) (1991) 617.

    Article  Google Scholar 

  29. Mo S, and Ching W Y, Phys Rev B 57 (1998) 15219.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Sadat Parhizgar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhizgar, S.S., Taheriniya, S. & Beheshtian, J. Experimental and Theoretical Study of Porous Al2O3. Trans Indian Inst Met 74, 381–386 (2021). https://doi.org/10.1007/s12666-020-02092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02092-7

Keywords

Navigation